Development of computational methods to predict protein pocket druggability and profile ligands using structural data

Alexandre Borrel

Tutkimustuotos: OpinnäyteVäitöskirja

Alkuperäiskielienglanti
JulkaisupaikkaHelsinki
Kustantaja
Painoksen ISBN978-951-51-2173-8
Sähköinen ISBN978-951-51-2174-5
TilaJulkaistu - 2016
OKM-julkaisutyyppiG5 Tohtorinväitöskirja (artikkeli)

Tieteenalat

  • 317 Farmasia

Lainaa tätä

Borrel, A. (2016). Development of computational methods to predict protein pocket druggability and profile ligands using structural data. Helsinki: University of Helsinki ; University Paris Diderot.
Borrel, Alexandre. / Development of computational methods to predict protein pocket druggability and profile ligands using structural data. Helsinki : University of Helsinki ; University Paris Diderot, 2016. 139 Sivumäärä
@phdthesis{1a95a32a6a89454484925396ec30543f,
title = "Development of computational methods to predict protein pocket druggability and profile ligands using structural data",
keywords = "317 Pharmacy",
author = "Alexandre Borrel",
year = "2016",
language = "English",
isbn = "978-951-51-2173-8",
series = "Dissertationes scholae doctoralis ad sanitatem investigandam Universitatis Helsinkiensis",
publisher = "University of Helsinki ; University Paris Diderot",
number = "37/2016",
address = "Finland",

}

Development of computational methods to predict protein pocket druggability and profile ligands using structural data. / Borrel, Alexandre.

Helsinki : University of Helsinki ; University Paris Diderot, 2016. 139 s.

Tutkimustuotos: OpinnäyteVäitöskirja

TY - THES

T1 - Development of computational methods to predict protein pocket druggability and profile ligands using structural data

AU - Borrel, Alexandre

PY - 2016

Y1 - 2016

KW - 317 Pharmacy

M3 - Doctoral Thesis

SN - 978-951-51-2173-8

T3 - Dissertationes scholae doctoralis ad sanitatem investigandam Universitatis Helsinkiensis

PB - University of Helsinki ; University Paris Diderot

CY - Helsinki

ER -

Borrel A. Development of computational methods to predict protein pocket druggability and profile ligands using structural data. Helsinki: University of Helsinki ; University Paris Diderot, 2016. 139 s. ( Dissertationes scholae doctoralis ad sanitatem investigandam Universitatis Helsinkiensis; 37/2016).