Dialect-to-Standard Normalization: A Large-Scale Multilingual Evaluation

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Text normalization methods have been commonly applied to historical language or user-generated content, but less often to dialectal transcriptions. In this paper, we introduce dialect-to-standard normalization - i.e., mapping phonetic transcriptions from different dialects to the orthographic norm of the standard variety - as a distinct sentence-level character transduction task and provide a large-scale analysis of dialect-to-standard normalization methods. To this end, we compile a multilingual dataset covering four languages: Finnish, Norwegian, Swiss German and Slovene. For the two biggest corpora, we provide three different data splits corresponding to different use cases for automatic normalization. We evaluate the most successful sequence-to-sequence model architectures proposed for text normalization tasks using different tokenization approaches and context sizes. We find that a character-level Transformer trained on sliding windows of three words works best for Finnish, Swiss German and Slovene, whereas the pre-trained byT5 model using full sentences obtains the best results for Norwegian. Finally, we perform an error analysis to evaluate the effect of different data splits on model performance.
Alkuperäiskielienglanti
OtsikkoFindings of the Association for Computational Linguistics : EMNLP 2023
ToimittajatHouda Bouamor, Juan Pino, Kalika Bali
Sivumäärä15
JulkaisupaikkaStroudsburg
KustantajaThe Association for Computational Linguistics
Julkaisupäivä1 jouluk. 2023
Sivut13814-13828
ISBN (elektroninen)979-8-89176-061-5
DOI - pysyväislinkit
TilaJulkaistu - 1 jouluk. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaThe 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP 2023) - , Singapore
Kesto: 6 jouluk. 202310 jouluk. 2023
https://2023.emnlp.org

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet
  • 6121 Kielitieteet

Siteeraa tätä