Differentially private Bayesian learning on distributed data

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Many applications of machine learning, for example in health care, would benefit from methods that can guarantee privacy of data subjects. Differential privacy (DP) has become established as a standard for protecting learning results. The standard DP algorithms require a single trusted party to have access to the entire data, which is a clear weakness, or add prohibitive amounts of noise. We consider DP Bayesian learning in a distributed setting, where each party only holds a single sample or a few samples of the data. We propose a learning strategy based on a secure multi-party sum function for aggregating summaries from data holders and the Gaussian mechanism for DP. Our method builds on an asymptotically optimal and practically efficient DP Bayesian inference with rapidly diminishing extra cost.
Alkuperäiskielienglanti
OtsikkoAdvances in Neural Information Processing Systems 30 (NIPS 2017)
ToimittajatI. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett
Sivumäärä10
Vuosikerta30
KustantajaNEURAL INFORMATION PROCESSING SYSTEMS (NIPS)
Julkaisupäivä2017
TilaJulkaistu - 2017
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaAnnual Conference on Neural Information Processing Systems - Long Beach, Yhdysvallat (USA)
Kesto: 4 jouluk. 20179 jouluk. 2017
Konferenssinumero: 31
http://nips.cc/Conferences/2017

Julkaisusarja

NimiAdvances in Neural Information Processing Systems
KustantajaNEURAL INFORMATION PROCESSING SYSTEMS (NIPS)
Vuosikerta30
ISSN (painettu)1049-5258

Tieteenalat

  • 112 Tilastotiede
  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä