Abstrakti
Background: Laccases can oxidize a broad spectrum of substrates, offering promising applications in various sectors, such as bioremediation, biomass fractionation in future biorefineries, and synthesis of biochemicals and biopolymers. However, laccase discovery and optimization with a desirable pH optimum remains a challenge due to the labor-intensive and time-consuming nature of the traditional laboratory methods. Results: This study presents a machine learning (ML)-integrated approach for predicting pH optima of basidiomycete fungal laccases, utilizing a small, curated dataset against a vast metagenomic data. Comparative computational analyses unveiled the structural and pH-dependent solubility differences between acidic and neutral-alkaline laccases, helping us understand the molecular bases of enzyme pH optimum. The pH profiling of the two ML-predicted alkaline laccase candidates from the basidiomycete fungus Lepista nuda further validated our computational approach, showing the accuracy of this comprehensive method. Conclusions: This study uncovers the efficacy of ML in the prediction of enzyme pH optimum from minimal datasets, marking a significant step towards harnessing computational tools for systematic screening of enzymes for biotechnology applications. Graphical Abstract: (Figure presented.)
Alkuperäiskieli | englanti |
---|---|
Artikkeli | 120 |
Lehti | Biotechnology for biofuels and bioproducts |
Vuosikerta | 17 |
Numero | 1 |
ISSN | 2731-3654 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 11 syysk. 2024 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu |
Lisätietoja
Publisher Copyright:© The Author(s) 2024.
Tieteenalat
- 11832 Mikrobiologia ja virologia
- 113 Tietojenkäsittely- ja informaatiotieteet