Projekteja vuodessa
Abstrakti
Causal team semantics ([2]) supports causal-observational languages, which enrich the languages for deterministic causation ([11], [18]) with dependencies and other team-specific operators. Handling the causal aspects of these languages requires a richer semantics than propositional team semantics; nonetheless, in this paper we show that the causal-observational languages considered in [2] can be embedded into first-order dependence logic by means of a translation and a careful choice of models. We show that, in some significant cases, the translation can be refined to an embedding into the Bernays-Schönfinkel-Ramsey fragment of dependence logic or, in the restricted case of recursive causal models, into the existential fragment. As an application, we use the embeddings to show the decidability of a satisfiability problem for the causal-observational languages. Along the way, we question the correctness of the semantics for interventionist counterfactuals proposed by Halpern ([18]) and propose an alternative one which behaves as usual in the uncontroversial recursive case.
Alkuperäiskieli | englanti |
---|---|
Lehti | Annals of Pure and Applied Logic |
Vuosikerta | 173 |
Numero | 10 |
Sivumäärä | 42 |
ISSN | 0168-0072 |
DOI - pysyväislinkit | |
Tila | Julkaistu - jouluk. 2022 |
Julkaistu ulkoisesti | Kyllä |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu |
Tapahtuma | Workshop on Logics of Dependence and Independence - online (virtual) Kesto: 10 elok. 2020 → 12 elok. 2020 http://www.math.helsinki.fi/logic/LoDE2020/ |
Tieteenalat
- 111 Matematiikka
- 611 Filosofia
Projektit
- 1 Aktiivinen
-
Looginen tutkimus indeterministisestä kausaliteetista
01/09/2022 → 31/08/2027
Projekti: Suomen Akatemia: Akatemiatutkija