Enhancing PFI Prediction with GDS-MIL: A Graph-Based Dual Stream MIL Approach

Gianpaolo Bontempo, Nicola Bartolini, Marta Lovino, Federico Bolelli, Anni Virtanen, Elisa Ficarra

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Whole-Slide Images (WSI) are emerging as a promising resource for studying biological tissues, demonstrating a great potential in aiding cancer diagnosis and improving patient treatment. However, the manual pixel-level annotation of WSIs is extremely time-consuming and practically unfeasible in real-world scenarios. Multi-Instance Learning (MIL) have gained attention as a weakly supervised approach able to address lack of annotation tasks. MIL models aggregate patches (e.g., cropping of a WSI) into bag-level representations (e.g., WSI label), but neglect spatial information of the WSIs, crucial for histological analysis. In the High-Grade Serous Ovarian Cancer (HGSOC) context, spatial information is essential to predict a prognosis indicator (the Platinum-Free Interval, PFI) from WSIs. Such a prediction would bring highly valuable insights both for patient treatment and prognosis of chemotherapy resistance. Indeed, NeoAdjuvant ChemoTherapy (NACT) induces changes in tumor tissue morphology and composition, making the prediction of PFI from WSIs extremely challenging. In this paper, we propose GDS-MIL, a method that integrates a state-of-the-art MIL model with a Graph ATtention layer (GAT in short) to inject a local context into each instance before MIL aggregation. Our approach achieves a significant improvement in accuracy on the “Ome18” PFI dataset. In summary, this paper presents a novel solution for enhancing PFI prediction in HGSOC, with the potential of significantly improving treatment decisions and patient outcomes.

Alkuperäiskielienglanti
OtsikkoImage Analysis and Processing – ICIAP 2023 - 22nd International Conference, ICIAP 2023, Proceedings
ToimittajatGian Luca Foresti, Andrea Fusiello, Edwin Hancock
Sivumäärä13
KustantajaSpringer Science and Business Media Deutschland GmbH
Julkaisupäivä2023
Sivut550-562
ISBN (painettu)978-3-031-43147-0
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Conference on Image Analysis and Processing - Udine, Italia
Kesto: 11 syysk. 202315 syysk. 2023
Konferenssinumero: 22

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vuosikerta14233 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Lisätietoja

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä