Estimating genealogies from unlinked marker data: a Bayesian approach

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Abstrakti

An issue often encountered in statistical genetics is whether, or to what extent, it is possible to estimate the degree to which individuals sampled from a background population are related to each other, on the basis of the available genotype data and some information on the demography of the population. In this article, we consider this question using explicit modelling of the pedigrees and gene flows at unlinked marker loci, but then restricting ourselves to a relatively recent history of the population, that is, considering the genealogy at most some tens of generations backwards in time. As a computational tool we use a Markov chain Monte Carlo numerical integration on the state space of genealogies of the sampled individuals. As illustrations of the method, we consider the question of relatedness at the level of genes/genomes (IBD estimation), using both simulated and real data. (C) 2007 Elsevier Inc. All rights reserved.
Alkuperäiskielienglanti
LehtiTheoretical Population Biology
Vuosikerta72
Numero3
Sivut305-322
Sivumäärä18
ISSN0040-5809
DOI - pysyväislinkit
TilaJulkaistu - 2007
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 111 Matematiikka

Siteeraa tätä