Evidence-Aware Mobile Computational Offloading

Huber Flores, Pan Hui, Petteri Nurmi, Eemil Lagerspetz, Sasu Tarkoma, Jukka Manner, Vassilis Kostakos, Yong Li, Xiang Su

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Abstrakti

Computational offloading can improve user experience of mobile apps through improved responsiveness and reduced energy footprint. A fundamental challenge in offloading is to distinguish situations where offloading is beneficial from those where it is counterproductive. Currently, offloading decisions are predominantly based on profiling performed on individual devices. While significant gains have been shown in benchmarks, these gains rarely translate to real-world use due to the complexity of contexts and parameters that affect offloading. We contribute by proposing crowdsensed evidence traces as a novel mechanism for improving the performance of offloading systems. Instead of limiting to profiling individual devices, crowdsensing enables characterizing execution contexts across a community of users, providing better generalisation and coverage of contexts. We demonstrate the feasibility of using crowdsensing to characterize offloading contexts through an analysis of two crowdsensing datasets. Motivated by our results, we present the design and development of the EMCO toolkit and platform as a novel solution for computational offloading. Experiments carried out on a testbed deployment in Amazon EC2 Ireland demonstrate that EMCO can consistently accelerate app execution while at the same time reduce energy footprint. We also demonstrate that EMCO provides better scalability than current cloud platforms, being able to serve a larger number of clients without variations in performance. Our framework, use cases, and tools are available as open source from GitHub.

Alkuperäiskielienglanti
LehtiIEEE Transactions on Mobile Computing
Vuosikerta17
Numero8
Sivut1834-1850
Sivumäärä17
ISSN1536-1233
DOI - pysyväislinkit
TilaJulkaistu - 1 elokuuta 2018
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä