TY - JOUR
T1 - Explaining apparent particle shrinkage related to new particle formation events in western Saudi Arabia does not require evaporation
AU - Hakala, Simo
AU - Vakkari, Ville
AU - Lihavainen, Heikki
AU - Hyvärinen, Antti Pekka
AU - Neitola, Kimmo
AU - Kontkanen, Jenni
AU - Kerminen, Veli Matti
AU - Kulmala, Markku
AU - Petäjä, Tuukka
AU - Hussein, Tareq
AU - Khoder, Mamdouh I.
AU - Alghamdi, Mansour A.
AU - Paasonen, Pauli
PY - 2023/8/24
Y1 - 2023/8/24
N2 - The majority of new particle formation (NPF) events observed in Hada Al Sham, western Saudi Arabia, during 2013-2015 showed an unusual progression where the diameter of a newly formed particle mode clearly started to decrease after the growth phase. Many previous studies refer to this phenomenon as aerosol shrinkage. We will opt to use the term decreasing mode diameter (DMD) event, as shrinkage bears the connotation of reduction in the sizes of individual particles, which does not have to be the case. While several previous studies speculate that ambient DMD events are caused by evaporation of semivolatile species, no concrete evidence has been provided, partly due to the rarity of the DMD events. The frequent occurrence and large number of DMD events in our observations allow us to perform statistically significant comparisons between the DMD and the typical NPF events that undergo continuous growth. In our analysis, we find no clear connection between DMD events and factors that might trigger particle evaporation at the measurement site. Instead, examination of air mass source areas and the horizontal distribution of anthropogenic emissions in the study region leads us to believe that the observed DMD events could be caused by advection of smaller, less-grown particles to the measurement site after the more-grown ones. Using a Lagrangian single-particle growth model, we confirm that the observed particle size development, including the DMD events, can be reproduced by non-volatile condensation and thus without evaporation. In fact, when considering increasing contributions from a semivolatile compound, we find deteriorating agreement between the measurements and the model. Based on these results, it seems unlikely that evaporation of semivolatile compounds would play a significant role in the DMD events at our measurement site. In the proposed non-volatile explanation, the DMD events are a result of the observed particles having spent an increasing fraction of their lifetime in a lower-growth environment, mainly enabled by the lower precursor vapor concentrations further away from the measurement site combined with decreasing photochemical production of condensable vapors in the afternoon. Correct identification of the cause of the DMD events is important as the fate and the climate relevance of the newly formed particles heavily depend on it-if the particles evaporated, their net contribution to larger and climatically active particle sizes would be greatly reduced. Our findings highlight the importance of considering transport-related effects in NPF event analysis, which is an often overlooked factor in such studies.
AB - The majority of new particle formation (NPF) events observed in Hada Al Sham, western Saudi Arabia, during 2013-2015 showed an unusual progression where the diameter of a newly formed particle mode clearly started to decrease after the growth phase. Many previous studies refer to this phenomenon as aerosol shrinkage. We will opt to use the term decreasing mode diameter (DMD) event, as shrinkage bears the connotation of reduction in the sizes of individual particles, which does not have to be the case. While several previous studies speculate that ambient DMD events are caused by evaporation of semivolatile species, no concrete evidence has been provided, partly due to the rarity of the DMD events. The frequent occurrence and large number of DMD events in our observations allow us to perform statistically significant comparisons between the DMD and the typical NPF events that undergo continuous growth. In our analysis, we find no clear connection between DMD events and factors that might trigger particle evaporation at the measurement site. Instead, examination of air mass source areas and the horizontal distribution of anthropogenic emissions in the study region leads us to believe that the observed DMD events could be caused by advection of smaller, less-grown particles to the measurement site after the more-grown ones. Using a Lagrangian single-particle growth model, we confirm that the observed particle size development, including the DMD events, can be reproduced by non-volatile condensation and thus without evaporation. In fact, when considering increasing contributions from a semivolatile compound, we find deteriorating agreement between the measurements and the model. Based on these results, it seems unlikely that evaporation of semivolatile compounds would play a significant role in the DMD events at our measurement site. In the proposed non-volatile explanation, the DMD events are a result of the observed particles having spent an increasing fraction of their lifetime in a lower-growth environment, mainly enabled by the lower precursor vapor concentrations further away from the measurement site combined with decreasing photochemical production of condensable vapors in the afternoon. Correct identification of the cause of the DMD events is important as the fate and the climate relevance of the newly formed particles heavily depend on it-if the particles evaporated, their net contribution to larger and climatically active particle sizes would be greatly reduced. Our findings highlight the importance of considering transport-related effects in NPF event analysis, which is an often overlooked factor in such studies.
KW - 114 Physical sciences
KW - 116 Chemical sciences
U2 - 10.5194/acp-23-9287-2023
DO - 10.5194/acp-23-9287-2023
M3 - Article
AN - SCOPUS:85172928951
SN - 1680-7316
VL - 23
SP - 9287
EP - 9321
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 16
ER -