Exploring Non-Linear Dependencies in Atmospheric Data with Mutual Information

Petri Laarne, Emil Amnell, Martha Arbayani Zaidan, Santtu Mikkonen, Tuomo Nieminen

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Abstrakti

Relations between atmospheric variables are often non-linear, which complicates research efforts to explore and understand multivariable datasets. We describe a mutual information approach to screen for the most significant associations in this setting. This method robustly detects linear and non-linear dependencies after minor data quality checking. Confounding factors and seasonal cycles can be taken into account without predefined models. We present two case studies of this method. The first one illustrates deseasonalization of a simple time series, with results identical to the classical method. The second one explores associations in a larger dataset of many variables, some of them lognormal (trace gas concentrations) or circular (wind direction). The examples use our Python package 'ennemi'.

Alkuperäiskielienglanti
Artikkeli1046
LehtiAtmosphere
Vuosikerta13
Numero7
Sivumäärä13
ISSN2073-4433
DOI - pysyväislinkit
TilaJulkaistu - heinäk. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 1172 Ympäristötiede
  • 114 Fysiikka
  • 1171 Geotieteet
  • 112 Tilastotiede

Siteeraa tätä