Grouping business news stories based on salience of named entities

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

In news aggregation systems focused on broad news domains, certain stories may appear in multiple articles. Depending on the relative importance of the story, the number of versions can reach dozens or hundreds within a day. The text in these versions may be nearly identical or quite different. Linking multiple versions of a story into a single group brings several important benefits to the end-user—reducing the cognitive load on the reader, as well as signaling the relative importance of the story. We present a grouping algorithm, and explore several vector-based representations of input documents: from a baseline using keywords, to a method using salience—a measure of importance of named entities in the text. We demonstrate that features beyond keywords yield substantial improvements, verified on a manually-annotated corpus of
business news stories.
Alkuperäiskielienglanti
Otsikko15th Conference of the European Chapter of the Association for Computational Linguistics : Proceedings of Conference, Volume 1: Long Papers
Sivumäärä11
JulkaisupaikkaStroudsburg, PA
KustantajaThe Association for Computational Linguistics
Julkaisupäivä2017
Sivut1096-1106
ISBN (elektroninen)978-1-945626-34-0
DOI - pysyväislinkit
TilaJulkaistu - 2017
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaConference of the European Chapter of the Association for Computational Linguistics - Valencia, Espanja
Kesto: 3 huhtikuuta 20177 huhtikuuta 2017
Konferenssinumero: 15

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä

Escoter, L., Pivovarova, L., Du, M., Katinskaia, A., & Yangarber, R. (2017). Grouping business news stories based on salience of named entities. teoksessa 15th Conference of the European Chapter of the Association for Computational Linguistics: Proceedings of Conference, Volume 1: Long Papers (Sivut 1096-1106). Stroudsburg, PA: The Association for Computational Linguistics. https://doi.org/10.18653/v1/e17-1103