Abstrakti
Instruction tuning a large language model with multiple languages can prepare it for multilingual downstream tasks. Nonetheless, it is yet to be determined whether having a handful of languages is sufficient, or whether the benefits increase with the inclusion of more. By finetuning large multilingual models on 1 to 52 languages, we present a case study on BLOOM to understand three pertinent factors affecting performance: the number of languages, language exposure, and similarity between training and test languages. Overall we found that 1) expanding language coverage in multilingual instruction tuning proves to be beneficial; 2) accuracy often significantly boots if the test language appears in the instruction mixture; 3) languages' genetic features correlate with cross-lingual transfer more than merely the number of language but different languages benefit to various degrees.
Alkuperäiskieli | englanti |
---|---|
Otsikko | Proceedings of the 31st International Conference on Computational Linguistics |
Toimittajat | Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, Steven Schockaert |
Sivumäärä | 7 |
Julkaisupaikka | Stroudsburg |
Kustantaja | Association for Computational Linguistics (ACL) |
Julkaisupäivä | 2025 |
Sivut | 2575-2581 |
ISBN (elektroninen) | 979-8-89176-196-4 |
Tila | Julkaistu - 2025 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | The 31st International Conference on Computational Linguistics (COLING 2025) - Abu Dhabi, Arabiemiirikunnat Kesto: 19 tammik. 2025 → 24 tammik. 2025 Konferenssinumero: 31 https://coling2025.org |
Julkaisusarja
Nimi | International Conference on Computational Linguistics |
---|---|
Kustantaja | Association for Computational Linguistics |
ISSN (painettu) | 2951-2093 |
Lisätietoja
Publisher Copyright:© 2025 Association for Computational Linguistics.
Tieteenalat
- 6121 Kielitieteet
- 113 Tietojenkäsittely- ja informaatiotieteet