Identification of hadronic tau lepton decays using a deep neural network

The CMS collaboration, A. Tumasyan, W. Adam, P. Eerola, Laurent Forthomme, H. Kirschenmann, K. Österberg, M. Voutilainen, Shudhashil Bharthuar, Erik Brücken, F. Garcia, J. Havukainen, Jaana Heikkilä, Minsuk Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. LindénMikko Lotti, P. Luukka, Laura Martikainen, Mikael Erkki Johannes Myllymäki, Jennifer Ott, Juska Pekkanen, H. Siikonen, E. Tuominen, J. Tuominiemi, Jussi Viinikainen, H. Petrow, T. Tuuva

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Abstrakti

A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (tau(h)) that originate from genuine tau leptons in the CMS detector against tau(h) candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a tau(h) candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine tau(h) to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient tau(h) reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved tau(h) reconstruction method are validated with LHC proton-proton collision data at root s = 13 TeV.
Alkuperäiskielienglanti
ArtikkeliP07023
LehtiJournal of Instrumentation
Vuosikerta17
Numero7
Sivumäärä53
ISSN1748-0221
DOI - pysyväislinkit
TilaJulkaistu - heinäk. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 114 Fysiikka

Siteeraa tätä