Intelligent Air Pollution Sensors Calibration for Extreme Events and Drifts Monitoring

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Abstrakti

Air quality low-cost sensors are affordable and can be deployed in massive scale in order to enable high-resolution spatio-temporal air pollution information. However, they often suffer from sensing accuracy, in particular when they are used for capturing extreme events. We propose an intelligent sensors calibration method that facilitates correcting low-cost sensors' measurements accurately and detecting the calibrators' drift. The proposed calibration method uses Bayesian framework to establish white-box and black-box calibrators. We evaluate the method in a controlled experiment under different types of smoking events. The calibration results show that the method accurately estimates the aerosol mass concentration during the smoking events. We show that black-box calibrators are more accurate than white-box calibrators. However, black-box calibrators may drift easily when a new smoking event occurs, while white-box calibrators remain robust. Therefore, we implement both of the calibrators in parallel to extract both calibrators' strengths and also enable drifting monitoring for calibration models. We also discuss that our method is implementable for other types of low-cost sensors suffered from sensing accuracy.
Alkuperäiskielienglanti
LehtiIEEE Transactions on Industrial Informatics
Vuosikerta19
Numero2
Sivut1366-1379
Sivumäärä14
ISSN1551-3203
DOI - pysyväislinkit
TilaJulkaistu - helmik. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet
  • 1172 Ympäristötiede

Siteeraa tätä