Joint Use of Node Attributes and Proximity for Node Classification

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Node classification aims to infer unknown node labels from known labels and other node attributes. Standard approaches for this task assume homophily, whereby a node’s label is predicted from the labels of other nodes nearby in the network. However, there are also cases of networks where labels are better predicted from the individual attributes of each node rather than the labels of nearby nodes. Ideally, node classification methods should flexibly adapt to a range of settings wherein unknown labels are predicted either from labels of nearby nodes, or individual node attributes, or partly both. In this paper, we propose a principled approach, JANE, based on a generative probabilistic model that jointly weighs the role of attributes and node proximity via embeddings in predicting labels. Experiments on multiple network datasets demonstrate that JANE exhibits the desired combination of versatility and competitive performance compared to baselines.
Alkuperäiskielienglanti
OtsikkoCOMPLEX NETWORKS & THEIR APPLICATIONS X, VOL 2 : Complex Networks & Their Applications X
ToimittajatR.M. Benito, C. Cherifi, H. Cherifi, E. Moro, L.M. Rocha, M. Sales-Pardo
Sivumäärä12
KustantajaSpringer, Cham
Julkaisupäivä1 tammik. 2022
Sivut511-522
ISBN (painettu)978-3-030-93412-5
ISBN (elektroninen)978-3-030-93413-2
DOI - pysyväislinkit
TilaJulkaistu - 1 tammik. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaThe International Conference on Complex Networks and their Applications (2021) - Madrid, Espanja
Kesto: 30 marrask. 20212 jouluk. 2021
Konferenssinumero: 10th
https://2021.complexnetworks.org/

Julkaisusarja

NimiStudies in Computational Intelligence
KustantajaSPRINGER INTERNATIONAL PUBLISHING AG
Vuosikerta1016
ISSN (painettu)1860-949X

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä