Projekteja vuodessa
Abstrakti
The efficiency of Markov Chain Monte Carlo (MCMC) depends on how the underlying geometry of the problem is taken into account. For distributions with strongly varying curvature, Riemannian metrics help in efficient exploration of the target distribution. Unfortunately, they have significant computational overhead due to e.g. repeated inversion of the metric tensor, and current geometric MCMC methods using the Fisher information matrix to induce the manifold are in practice slow. We propose a new alternative Riemannian metric for MCMC, by embedding the target distribution into a higher-dimensional Euclidean space as a Monge patch and using the induced metric determined by direct geometric reasoning. Our metric only requires first-order gradient information and has fast inverse and determinants, and allows reducing the computational complexity of individual iterations from cubic to quadratic in the problem dimensionality. We demonstrate how Lagrangian Monte Carlo in this metric efficiently explores the target distributions.
Alkuperäiskieli | englanti |
---|---|
Otsikko | Proceedings of The 25th International Conference on Artificial Intelligence and Statistics |
Toimittajat | Gustau Camps-Vall, Francisco J. R. Ruiz, Isabel Valera |
Sivumäärä | 18 |
Kustantaja | Journal of Machine Learning Research |
Julkaisupäivä | 29 tammik. 2022 |
Sivut | 4764-4781 |
Tila | Julkaistu - 29 tammik. 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | International Conference on Artificial Intelligence and Statistic - Kesto: 28 maalisk. 2022 → 30 maalisk. 2022 Konferenssinumero: 25 |
Julkaisusarja
Nimi | Proceedings of Machine Learning Research, PMLR |
---|---|
Kustantaja | Journal of Machine Learning Research |
Vuosikerta | 151 |
ISSN (elektroninen) | 2640-3498 |
Tieteenalat
- 113 Tietojenkäsittely- ja informaatiotieteet
Projektit
- 1 Aktiivinen
-
Laskennallisesti tehokas päättely Riemannin pinnoilla
Hartmann, M., Williams Moreno Sanchez, B. & Yu, H.
01/09/2022 → 31/08/2025
Projekti: Suomen Akatemia: Tutkijatohtorin tehtävä