Lagrangian manifold Monte Carlo on Monge patches

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

The efficiency of Markov Chain Monte Carlo (MCMC) depends on how the underlying geometry of the problem is taken into account. For distributions with strongly varying curvature, Riemannian metrics help in efficient exploration of the target distribution. Unfortunately, they have significant computational overhead due to e.g. repeated inversion of the metric tensor, and current geometric MCMC methods using the Fisher information matrix to induce the manifold are in practice slow. We propose a new alternative Riemannian metric for MCMC, by embedding the target distribution into a higher-dimensional Euclidean space as a Monge patch and using the induced metric determined by direct geometric reasoning. Our metric only requires first-order gradient information and has fast inverse and determinants, and allows reducing the computational complexity of individual iterations from cubic to quadratic in the problem dimensionality. We demonstrate how Lagrangian Monte Carlo in this metric efficiently explores the target distributions.
Alkuperäiskielienglanti
OtsikkoProceedings of The 25th International Conference on Artificial Intelligence and Statistics
ToimittajatGustau Camps-Vall, Francisco J. R. Ruiz, Isabel Valera
Sivumäärä18
KustantajaJournal of Machine Learning Research
Julkaisupäivä29 tammik. 2022
Sivut4764-4781
TilaJulkaistu - 29 tammik. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Conference on Artificial Intelligence and Statistic -
Kesto: 28 maalisk. 202230 maalisk. 2022
Konferenssinumero: 25

Julkaisusarja

NimiProceedings of Machine Learning Research, PMLR
KustantajaJournal of Machine Learning Research
Vuosikerta151
ISSN (elektroninen)2640-3498

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä