Learning Private Neural Language Modeling with Attentive Aggregation

Shaoxiong Ji, Shirui Pan, Guodong Long, Xue Li, Jing Jiang, Zi Huang

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Mobile keyboard suggestion is typically regarded as a word-level language modeling problem. Centralized machine learning techniques require the collection of massive user data for training purposes, which may raise privacy concerns in relation to users' sensitive data. Federated learning (FL) provides a promising approach to learning private language modeling for intelligent personalized keyboard suggestions by training models on distributed clients rather than training them on a central server. To obtain a global model for prediction, existing FL algorithms simply average the client models and ignore the importance of each client during model aggregation. Furthermore, there is no optimization for learning a well-generalized global model on the central server. To solve these problems, we propose a novel model aggregation with an attention mechanism considering the contribution of client models to the global model, together with an optimization technique during server aggregation. Our proposed attentive aggregation method minimizes the weighted distance between the server model and client models by iteratively updating parameters while attending to the distance between the server model and client models. Experiments on two popular language modeling datasets and a social media dataset show that our proposed method outperforms its counterparts in terms of perplexity and communication cost in most settings of comparison.
Alkuperäiskielienglanti
OtsikkoIEEE International Joint Conference on Neural Networks (IJCNN)
Sivumäärä8
Julkaisupäivä2019
DOI - pysyväislinkit
TilaJulkaistu - 2019
Julkaistu ulkoisestiKyllä
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa

Julkaisusarja

NimiIEEE International Joint Conference on Neural Networks (IJCNN)
KustantajaIEEE
ISSN (painettu)2161-4393

Siteeraa tätä