Long-term effects of forest fires on soil greenhouse gas emissions and extracellular enzyme activities in a hemiboreal forest

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Kuvaus

Fire is the most important natural disturbance in boreal forests, and it has a major role regulating the carbon (C) budget of these systems. With the expected increase in fire frequency, the greenhouse gas (GHG) budget of boreal forest soils may change. In order to understand the long-term nature of the soil–atmosphere GHG exchange after fire, we established a fire chronosequence representing successional stages at 8, 19, 34, 65, 76 and 179years following stand-replacing fires in hemiboreal Scots pine forests in Estonia. Changes in extracellular activity, litter decomposition, vegetation biomass, and soil physicochemical properties were assessed in relation to carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions. Soil temperature was highest 8years after fire, whereas soil moisture varied through the fire chronosequences without a consistent pattern. Litter decomposition and CO2 efflux were still lower 8years after fire compared with pre-fire levels (179years after fire). Both returned to pre-fire levels before vegetation re-established, and CO2 efflux was only strongly responsive to temperature from 19years after fire onward. Recovery of CO2 efflux in the long term was associated with a moderate effect of fire on enzyme activity, the input of above- and below-ground litter carbon, and the re-establishment of vegetation. Soil acted as a CH4 sink and N2O source similarly in all successional stages. Compared with soil moisture and time after fire, soil temperature was the most important predictor for both GHGs. The re-establishment of overstorey and vegetation cover (mosses and lichens) might have caused an increase in CH4 and N2O effluxes in the studied areas, respectively.
Alkuperäiskielienglanti
LehtiScience of the Total Environment
ISSN0048-9697
DOI - pysyväislinkit
TilaE-pub ahead of print - 14 marraskuuta 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 4112 Metsätiede

Lainaa tätä

@article{65ce73147e66465ca0d457c3c9ff1e9f,
title = "Long-term effects of forest fires on soil greenhouse gas emissions and extracellular enzyme activities in a hemiboreal forest",
abstract = "Fire is the most important natural disturbance in boreal forests, and it has a major role regulating the carbon (C) budget of these systems. With the expected increase in fire frequency, the greenhouse gas (GHG) budget of boreal forest soils may change. In order to understand the long-term nature of the soil–atmosphere GHG exchange after fire, we established a fire chronosequence representing successional stages at 8, 19, 34, 65, 76 and 179years following stand-replacing fires in hemiboreal Scots pine forests in Estonia. Changes in extracellular activity, litter decomposition, vegetation biomass, and soil physicochemical properties were assessed in relation to carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions. Soil temperature was highest 8years after fire, whereas soil moisture varied through the fire chronosequences without a consistent pattern. Litter decomposition and CO2 efflux were still lower 8years after fire compared with pre-fire levels (179years after fire). Both returned to pre-fire levels before vegetation re-established, and CO2 efflux was only strongly responsive to temperature from 19years after fire onward. Recovery of CO2 efflux in the long term was associated with a moderate effect of fire on enzyme activity, the input of above- and below-ground litter carbon, and the re-establishment of vegetation. Soil acted as a CH4 sink and N2O source similarly in all successional stages. Compared with soil moisture and time after fire, soil temperature was the most important predictor for both GHGs. The re-establishment of overstorey and vegetation cover (mosses and lichens) might have caused an increase in CH4 and N2O effluxes in the studied areas, respectively.",
keywords = "Soil respiration, Methane, Nitrous oxide, Decomposition, Fire disturbance, Fire chronosequence, 4112 Forestry",
author = "Christine Ribeiro-Kumara and Jukka Pumpanen and Jussi Heinonsalo and Marek Metslaid and Argo Orumaa and Kalev J{\~o}giste and Frank Berninger and Kajar K{\"o}ster",
year = "2019",
month = "11",
day = "14",
doi = "10.1016/j.scitotenv.2019.135291",
language = "English",
journal = "Science of the Total Environment",
issn = "0048-9697",
publisher = "Elsevier Scientific Publ. Co",

}

TY - JOUR

T1 - Long-term effects of forest fires on soil greenhouse gas emissions and extracellular enzyme activities in a hemiboreal forest

AU - Ribeiro-Kumara, Christine

AU - Pumpanen, Jukka

AU - Heinonsalo, Jussi

AU - Metslaid, Marek

AU - Orumaa, Argo

AU - Jõgiste, Kalev

AU - Berninger, Frank

AU - Köster, Kajar

PY - 2019/11/14

Y1 - 2019/11/14

N2 - Fire is the most important natural disturbance in boreal forests, and it has a major role regulating the carbon (C) budget of these systems. With the expected increase in fire frequency, the greenhouse gas (GHG) budget of boreal forest soils may change. In order to understand the long-term nature of the soil–atmosphere GHG exchange after fire, we established a fire chronosequence representing successional stages at 8, 19, 34, 65, 76 and 179years following stand-replacing fires in hemiboreal Scots pine forests in Estonia. Changes in extracellular activity, litter decomposition, vegetation biomass, and soil physicochemical properties were assessed in relation to carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions. Soil temperature was highest 8years after fire, whereas soil moisture varied through the fire chronosequences without a consistent pattern. Litter decomposition and CO2 efflux were still lower 8years after fire compared with pre-fire levels (179years after fire). Both returned to pre-fire levels before vegetation re-established, and CO2 efflux was only strongly responsive to temperature from 19years after fire onward. Recovery of CO2 efflux in the long term was associated with a moderate effect of fire on enzyme activity, the input of above- and below-ground litter carbon, and the re-establishment of vegetation. Soil acted as a CH4 sink and N2O source similarly in all successional stages. Compared with soil moisture and time after fire, soil temperature was the most important predictor for both GHGs. The re-establishment of overstorey and vegetation cover (mosses and lichens) might have caused an increase in CH4 and N2O effluxes in the studied areas, respectively.

AB - Fire is the most important natural disturbance in boreal forests, and it has a major role regulating the carbon (C) budget of these systems. With the expected increase in fire frequency, the greenhouse gas (GHG) budget of boreal forest soils may change. In order to understand the long-term nature of the soil–atmosphere GHG exchange after fire, we established a fire chronosequence representing successional stages at 8, 19, 34, 65, 76 and 179years following stand-replacing fires in hemiboreal Scots pine forests in Estonia. Changes in extracellular activity, litter decomposition, vegetation biomass, and soil physicochemical properties were assessed in relation to carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions. Soil temperature was highest 8years after fire, whereas soil moisture varied through the fire chronosequences without a consistent pattern. Litter decomposition and CO2 efflux were still lower 8years after fire compared with pre-fire levels (179years after fire). Both returned to pre-fire levels before vegetation re-established, and CO2 efflux was only strongly responsive to temperature from 19years after fire onward. Recovery of CO2 efflux in the long term was associated with a moderate effect of fire on enzyme activity, the input of above- and below-ground litter carbon, and the re-establishment of vegetation. Soil acted as a CH4 sink and N2O source similarly in all successional stages. Compared with soil moisture and time after fire, soil temperature was the most important predictor for both GHGs. The re-establishment of overstorey and vegetation cover (mosses and lichens) might have caused an increase in CH4 and N2O effluxes in the studied areas, respectively.

KW - Soil respiration

KW - Methane

KW - Nitrous oxide

KW - Decomposition

KW - Fire disturbance

KW - Fire chronosequence

KW - 4112 Forestry

U2 - 10.1016/j.scitotenv.2019.135291

DO - 10.1016/j.scitotenv.2019.135291

M3 - Article

JO - Science of the Total Environment

JF - Science of the Total Environment

SN - 0048-9697

ER -