Machine-learning interatomic potential for radiation damage and defects in tungsten

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Abstrakti

We introduce a machine-learning interatomic potential for tungsten using the Gaussian approximation potential framework. We specifically focus on properties relevant for simulations of radiation-induced collision cascades and the damage they produce, including a realistic repulsive potential for the short-range many-body cascade dynamics and a good description of the liquid phase. Furthermore, the potential accurately reproduces surface properties and the energetics of vacancy and self-interstitial clusters, which have been longstanding deficiencies of existing potentials. The potential enables molecular dynamics simulations of radiation damage in tungsten with unprecedented accuracy.
Alkuperäiskielienglanti
Artikkeli144105
LehtiPhysical Review B
Vuosikerta100
Numero14
Sivumäärä15
ISSN2469-9950
DOI - pysyväislinkit
TilaJulkaistu - 17 lokak. 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 114 Fysiikka

Siteeraa tätä