Moho depth across the Trans-European Suture Zone from P-and S-receiver functions

Brigitte Knapmeyer-Endrun, Frank Kruger, M. Wilde-Piorko, H. Geissler, J. Plomerova, M. Grad, J. Babuska, E. Bruckl, J. Cyziene, W. Czuba, R. England, E. Gaczynski, R. Gazdova, S. Gregersen, A. Guterch, W. Hanka, E. Hegedus, B. Heuer, B. Jedlicka, J. LazauskieneG.R. Keller, R. Kind, K. Klinge, P. Kolinsky, Kari Komminaho, E. Kozlovskaya, T. Larsen, M. Majdanski, J. Malek, G. Motuza, O. Novotny, R. Pietrasiak, T. Plenefisch, B. Ruzek, S. Sliaupa, P. Sroda, M. Swieczak, Timo Tiira, P. Voss, P. Wiejacz

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Kuvaus

The Mohorovicic discontinuity, Moho for short, which marks the boundary between crust and mantle, is the main first-order structure within the lithosphere. Geodynamics and tectonic evolution determine its depth level and properties. Here, we present a map of the Moho in central Europe across the Teisseyre-Tornquist Zone, a region for which a number of previous studies are available. Our results are based on homogeneous and consistent processing of P- and S-receiver functions for the largest passive seismological data set in this region yet, consisting of more than 40 000 receiver functions from almost 500 station. Besides, we also provide new results for the crustal Vp/Vs ratio for the whole area. Our results are in good agreement with previous, more localized receiver function studies, as well as with the interpretation of seismic profiles, while at the same time resolving a higher level of detail than previous maps covering the area, for example regarding the Eifel Plume region, Rhine Graben and northern Alps. The close correspondence with the seismic data regarding crustal structure also increases confidence in use of the data in crustal corrections and the imaging of deeper structure, for which no independent seismic information is available. In addition to the pronounced, stepwise transition from crustal thicknesses of 30km in Phanerozoic Europe to more than 45 beneath the East European Craton, we can distinguish other terrane boundaries based on Moho depth as well as average crustal Vp/Vsratio and Moho phase amplitudes. The terranes with distinct crustal properties span a wide range of ages, from Palaeoproterozoic in Lithuania to Cenozoic in the Alps, reflecting the complex tectonic history of Europe. Crustal thickness and properties in the study area are also markedly influenced by tectonic overprinting, for example the formation of the Central European Basin System, and the European Cenozoic Rift System. In the areas affected by Cenozoic rifting and volcanism, thinning of the crust corresponds to lithospheric updoming reported in recent surface wave and S-receiver function studies, as expected for thermally induced deformation. The same correlation applies for crustal thickening, not only across the Trans-European Suture Zone, but also within the southern part of the Bohemian Massif. A high Poisson’s ratio of 0.27 is obtained for the craton, which is consistent with a thick mafic lower crust. In contrast, we typically find Poisson’s ratios around 0.25 for Phanerozoic Europe outside of deep sedimentary basins. Mapping of the thickness of the shallowest crustal layer, that is low-velocity sediments or weathered rock, indicates values in excess of 6km for the most pronounced basins in the study area, while thicknesses of less than 4km are found within the craton, central Germany and most of the Czech Republic.
Alkuperäiskielienglanti
LehtiGeophysical Journal International
Vuosikerta197
Numero2
Sivut1048-1075
Sivumäärä28
ISSN0956-540X
DOI - pysyväislinkit
TilaJulkaistu - 2014
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 1171 Geotieteet
  • Body waves
  • Cratons
  • Crustal structure
  • Europe

Lainaa tätä

Knapmeyer-Endrun, B., Kruger, F., Wilde-Piorko, M., Geissler, H., Plomerova, J., Grad, M., ... Wiejacz, P. (2014). Moho depth across the Trans-European Suture Zone from P-and S-receiver functions. Geophysical Journal International, 197(2), 1048-1075. https://doi.org/10.1093/gji/ggu035
Knapmeyer-Endrun, Brigitte ; Kruger, Frank ; Wilde-Piorko, M. ; Geissler, H. ; Plomerova, J. ; Grad, M. ; Babuska, J. ; Bruckl, E. ; Cyziene, J. ; Czuba, W. ; England, R. ; Gaczynski, E. ; Gazdova, R. ; Gregersen, S. ; Guterch, A. ; Hanka, W. ; Hegedus, E. ; Heuer, B. ; Jedlicka, B. ; Lazauskiene, J. ; Keller, G.R. ; Kind, R. ; Klinge, K. ; Kolinsky, P. ; Komminaho, Kari ; Kozlovskaya, E. ; Larsen, T. ; Majdanski, M. ; Malek, J. ; Motuza, G. ; Novotny, O. ; Pietrasiak, R. ; Plenefisch, T. ; Ruzek, B. ; Sliaupa, S. ; Sroda, P. ; Swieczak, M. ; Tiira, Timo ; Voss, P. ; Wiejacz, P. / Moho depth across the Trans-European Suture Zone from P-and S-receiver functions. Julkaisussa: Geophysical Journal International. 2014 ; Vuosikerta 197, Nro 2. Sivut 1048-1075.
@article{f8066811a75143fb8dcce4c32facab1e,
title = "Moho depth across the Trans-European Suture Zone from P-and S-receiver functions",
abstract = "The Mohorovicic discontinuity, Moho for short, which marks the boundary between crust and mantle, is the main first-order structure within the lithosphere. Geodynamics and tectonic evolution determine its depth level and properties. Here, we present a map of the Moho in central Europe across the Teisseyre-Tornquist Zone, a region for which a number of previous studies are available. Our results are based on homogeneous and consistent processing of P- and S-receiver functions for the largest passive seismological data set in this region yet, consisting of more than 40 000 receiver functions from almost 500 station. Besides, we also provide new results for the crustal Vp/Vs ratio for the whole area. Our results are in good agreement with previous, more localized receiver function studies, as well as with the interpretation of seismic profiles, while at the same time resolving a higher level of detail than previous maps covering the area, for example regarding the Eifel Plume region, Rhine Graben and northern Alps. The close correspondence with the seismic data regarding crustal structure also increases confidence in use of the data in crustal corrections and the imaging of deeper structure, for which no independent seismic information is available. In addition to the pronounced, stepwise transition from crustal thicknesses of 30km in Phanerozoic Europe to more than 45 beneath the East European Craton, we can distinguish other terrane boundaries based on Moho depth as well as average crustal Vp/Vsratio and Moho phase amplitudes. The terranes with distinct crustal properties span a wide range of ages, from Palaeoproterozoic in Lithuania to Cenozoic in the Alps, reflecting the complex tectonic history of Europe. Crustal thickness and properties in the study area are also markedly influenced by tectonic overprinting, for example the formation of the Central European Basin System, and the European Cenozoic Rift System. In the areas affected by Cenozoic rifting and volcanism, thinning of the crust corresponds to lithospheric updoming reported in recent surface wave and S-receiver function studies, as expected for thermally induced deformation. The same correlation applies for crustal thickening, not only across the Trans-European Suture Zone, but also within the southern part of the Bohemian Massif. A high Poisson’s ratio of 0.27 is obtained for the craton, which is consistent with a thick mafic lower crust. In contrast, we typically find Poisson’s ratios around 0.25 for Phanerozoic Europe outside of deep sedimentary basins. Mapping of the thickness of the shallowest crustal layer, that is low-velocity sediments or weathered rock, indicates values in excess of 6km for the most pronounced basins in the study area, while thicknesses of less than 4km are found within the craton, central Germany and most of the Czech Republic.",
keywords = "1171 Geosciences, Body waves , Cratons, Crustal structure, Europe",
author = "Brigitte Knapmeyer-Endrun and Frank Kruger and M. Wilde-Piorko and H. Geissler and J. Plomerova and M. Grad and J. Babuska and E. Bruckl and J. Cyziene and W. Czuba and R. England and E. Gaczynski and R. Gazdova and S. Gregersen and A. Guterch and W. Hanka and E. Hegedus and B. Heuer and B. Jedlicka and J. Lazauskiene and G.R. Keller and R. Kind and K. Klinge and P. Kolinsky and Kari Komminaho and E. Kozlovskaya and T. Larsen and M. Majdanski and J. Malek and G. Motuza and O. Novotny and R. Pietrasiak and T. Plenefisch and B. Ruzek and S. Sliaupa and P. Sroda and M. Swieczak and Timo Tiira and P. Voss and P. Wiejacz",
year = "2014",
doi = "10.1093/gji/ggu035",
language = "English",
volume = "197",
pages = "1048--1075",
journal = "Geophysical Journal International",
issn = "0956-540X",
publisher = "Oxford University Press",
number = "2",

}

Knapmeyer-Endrun, B, Kruger, F, Wilde-Piorko, M, Geissler, H, Plomerova, J, Grad, M, Babuska, J, Bruckl, E, Cyziene, J, Czuba, W, England, R, Gaczynski, E, Gazdova, R, Gregersen, S, Guterch, A, Hanka, W, Hegedus, E, Heuer, B, Jedlicka, B, Lazauskiene, J, Keller, GR, Kind, R, Klinge, K, Kolinsky, P, Komminaho, K, Kozlovskaya, E, Larsen, T, Majdanski, M, Malek, J, Motuza, G, Novotny, O, Pietrasiak, R, Plenefisch, T, Ruzek, B, Sliaupa, S, Sroda, P, Swieczak, M, Tiira, T, Voss, P & Wiejacz, P 2014, 'Moho depth across the Trans-European Suture Zone from P-and S-receiver functions', Geophysical Journal International, Vuosikerta 197, Nro 2, Sivut 1048-1075. https://doi.org/10.1093/gji/ggu035

Moho depth across the Trans-European Suture Zone from P-and S-receiver functions. / Knapmeyer-Endrun, Brigitte; Kruger, Frank; Wilde-Piorko, M.; Geissler, H.; Plomerova, J.; Grad, M.; Babuska, J.; Bruckl, E.; Cyziene, J.; Czuba, W.; England, R.; Gaczynski, E.; Gazdova, R.; Gregersen, S.; Guterch, A.; Hanka, W.; Hegedus, E.; Heuer, B.; Jedlicka, B.; Lazauskiene, J.; Keller, G.R.; Kind, R.; Klinge, K.; Kolinsky, P.; Komminaho, Kari; Kozlovskaya, E.; Larsen, T.; Majdanski, M.; Malek, J.; Motuza, G.; Novotny, O.; Pietrasiak, R.; Plenefisch, T.; Ruzek, B.; Sliaupa, S.; Sroda, P.; Swieczak, M.; Tiira, Timo; Voss, P.; Wiejacz, P.

julkaisussa: Geophysical Journal International, Vuosikerta 197, Nro 2, 2014, s. 1048-1075.

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

TY - JOUR

T1 - Moho depth across the Trans-European Suture Zone from P-and S-receiver functions

AU - Knapmeyer-Endrun, Brigitte

AU - Kruger, Frank

AU - Wilde-Piorko, M.

AU - Geissler, H.

AU - Plomerova, J.

AU - Grad, M.

AU - Babuska, J.

AU - Bruckl, E.

AU - Cyziene, J.

AU - Czuba, W.

AU - England, R.

AU - Gaczynski, E.

AU - Gazdova, R.

AU - Gregersen, S.

AU - Guterch, A.

AU - Hanka, W.

AU - Hegedus, E.

AU - Heuer, B.

AU - Jedlicka, B.

AU - Lazauskiene, J.

AU - Keller, G.R.

AU - Kind, R.

AU - Klinge, K.

AU - Kolinsky, P.

AU - Komminaho, Kari

AU - Kozlovskaya, E.

AU - Larsen, T.

AU - Majdanski, M.

AU - Malek, J.

AU - Motuza, G.

AU - Novotny, O.

AU - Pietrasiak, R.

AU - Plenefisch, T.

AU - Ruzek, B.

AU - Sliaupa, S.

AU - Sroda, P.

AU - Swieczak, M.

AU - Tiira, Timo

AU - Voss, P.

AU - Wiejacz, P.

PY - 2014

Y1 - 2014

N2 - The Mohorovicic discontinuity, Moho for short, which marks the boundary between crust and mantle, is the main first-order structure within the lithosphere. Geodynamics and tectonic evolution determine its depth level and properties. Here, we present a map of the Moho in central Europe across the Teisseyre-Tornquist Zone, a region for which a number of previous studies are available. Our results are based on homogeneous and consistent processing of P- and S-receiver functions for the largest passive seismological data set in this region yet, consisting of more than 40 000 receiver functions from almost 500 station. Besides, we also provide new results for the crustal Vp/Vs ratio for the whole area. Our results are in good agreement with previous, more localized receiver function studies, as well as with the interpretation of seismic profiles, while at the same time resolving a higher level of detail than previous maps covering the area, for example regarding the Eifel Plume region, Rhine Graben and northern Alps. The close correspondence with the seismic data regarding crustal structure also increases confidence in use of the data in crustal corrections and the imaging of deeper structure, for which no independent seismic information is available. In addition to the pronounced, stepwise transition from crustal thicknesses of 30km in Phanerozoic Europe to more than 45 beneath the East European Craton, we can distinguish other terrane boundaries based on Moho depth as well as average crustal Vp/Vsratio and Moho phase amplitudes. The terranes with distinct crustal properties span a wide range of ages, from Palaeoproterozoic in Lithuania to Cenozoic in the Alps, reflecting the complex tectonic history of Europe. Crustal thickness and properties in the study area are also markedly influenced by tectonic overprinting, for example the formation of the Central European Basin System, and the European Cenozoic Rift System. In the areas affected by Cenozoic rifting and volcanism, thinning of the crust corresponds to lithospheric updoming reported in recent surface wave and S-receiver function studies, as expected for thermally induced deformation. The same correlation applies for crustal thickening, not only across the Trans-European Suture Zone, but also within the southern part of the Bohemian Massif. A high Poisson’s ratio of 0.27 is obtained for the craton, which is consistent with a thick mafic lower crust. In contrast, we typically find Poisson’s ratios around 0.25 for Phanerozoic Europe outside of deep sedimentary basins. Mapping of the thickness of the shallowest crustal layer, that is low-velocity sediments or weathered rock, indicates values in excess of 6km for the most pronounced basins in the study area, while thicknesses of less than 4km are found within the craton, central Germany and most of the Czech Republic.

AB - The Mohorovicic discontinuity, Moho for short, which marks the boundary between crust and mantle, is the main first-order structure within the lithosphere. Geodynamics and tectonic evolution determine its depth level and properties. Here, we present a map of the Moho in central Europe across the Teisseyre-Tornquist Zone, a region for which a number of previous studies are available. Our results are based on homogeneous and consistent processing of P- and S-receiver functions for the largest passive seismological data set in this region yet, consisting of more than 40 000 receiver functions from almost 500 station. Besides, we also provide new results for the crustal Vp/Vs ratio for the whole area. Our results are in good agreement with previous, more localized receiver function studies, as well as with the interpretation of seismic profiles, while at the same time resolving a higher level of detail than previous maps covering the area, for example regarding the Eifel Plume region, Rhine Graben and northern Alps. The close correspondence with the seismic data regarding crustal structure also increases confidence in use of the data in crustal corrections and the imaging of deeper structure, for which no independent seismic information is available. In addition to the pronounced, stepwise transition from crustal thicknesses of 30km in Phanerozoic Europe to more than 45 beneath the East European Craton, we can distinguish other terrane boundaries based on Moho depth as well as average crustal Vp/Vsratio and Moho phase amplitudes. The terranes with distinct crustal properties span a wide range of ages, from Palaeoproterozoic in Lithuania to Cenozoic in the Alps, reflecting the complex tectonic history of Europe. Crustal thickness and properties in the study area are also markedly influenced by tectonic overprinting, for example the formation of the Central European Basin System, and the European Cenozoic Rift System. In the areas affected by Cenozoic rifting and volcanism, thinning of the crust corresponds to lithospheric updoming reported in recent surface wave and S-receiver function studies, as expected for thermally induced deformation. The same correlation applies for crustal thickening, not only across the Trans-European Suture Zone, but also within the southern part of the Bohemian Massif. A high Poisson’s ratio of 0.27 is obtained for the craton, which is consistent with a thick mafic lower crust. In contrast, we typically find Poisson’s ratios around 0.25 for Phanerozoic Europe outside of deep sedimentary basins. Mapping of the thickness of the shallowest crustal layer, that is low-velocity sediments or weathered rock, indicates values in excess of 6km for the most pronounced basins in the study area, while thicknesses of less than 4km are found within the craton, central Germany and most of the Czech Republic.

KW - 1171 Geosciences

KW - Body waves

KW - Cratons

KW - Crustal structure

KW - Europe

U2 - 10.1093/gji/ggu035

DO - 10.1093/gji/ggu035

M3 - Article

VL - 197

SP - 1048

EP - 1075

JO - Geophysical Journal International

JF - Geophysical Journal International

SN - 0956-540X

IS - 2

ER -

Knapmeyer-Endrun B, Kruger F, Wilde-Piorko M, Geissler H, Plomerova J, Grad M et al. Moho depth across the Trans-European Suture Zone from P-and S-receiver functions. Geophysical Journal International. 2014;197(2):1048-1075. https://doi.org/10.1093/gji/ggu035