Monolingual or Multilingual Instruction Tuning: Which Makes a Better Alpaca

Pinzhen Chen, Shaoxiong Ji, Nikolay Bogoychev, Andrey Kutuzov, Barry Haddow, Kenneth Heafield

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Foundational large language models (LLMs) can be instruction-tuned to perform open-domain question answering, facilitating applications like chat assistants. While such efforts are often carried out in a single language, we empirically analyze cost-efficient strategies for multilingual scenarios. Our study employs the Alpaca dataset and machine translations of it to form multilingual data, which is then used to tune LLMs through either low-rank adaptation or full-parameter training. Under a controlled computation budget, comparisons show that multilingual tuning is on par or better than tuning a model for each language. Furthermore, multilingual tuning with downsampled data can be as powerful and more robust. Our findings serve as a guide for expanding language support through instruction tuning.

Alkuperäiskielienglanti
OtsikkoFindings of the Association for Computational Linguistics : EACL 2024
ToimittajatYvette Graham, Matthew Purver
Sivumäärä10
JulkaisupaikkaKerrville
KustantajaAssociation for Computational Linguistics (ACL)
Julkaisupäivä2024
Sivut1347-1356
ISBN (elektroninen)979-8-89176-093-6
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaThe 18th Conference of the European Chapter of the Association for Computational Linguistics - St. Julians, Malta
Kesto: 17 maalisk. 202422 maalisk. 2024
Konferenssinumero: 18

Lisätietoja

Publisher Copyright:
© 2024 Association for Computational Linguistics.

Tieteenalat

  • 6121 Kielitieteet
  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä