Abstrakti
Foundational large language models (LLMs) can be instruction-tuned to perform open-domain question answering, facilitating applications like chat assistants. While such efforts are often carried out in a single language, we empirically analyze cost-efficient strategies for multilingual scenarios. Our study employs the Alpaca dataset and machine translations of it to form multilingual data, which is then used to tune LLMs through either low-rank adaptation or full-parameter training. Under a controlled computation budget, comparisons show that multilingual tuning is on par or better than tuning a model for each language. Furthermore, multilingual tuning with downsampled data can be as powerful and more robust. Our findings serve as a guide for expanding language support through instruction tuning.
Alkuperäiskieli | englanti |
---|---|
Otsikko | Findings of the Association for Computational Linguistics : EACL 2024 |
Toimittajat | Yvette Graham, Matthew Purver |
Sivumäärä | 10 |
Julkaisupaikka | Kerrville |
Kustantaja | Association for Computational Linguistics (ACL) |
Julkaisupäivä | 2024 |
Sivut | 1347-1356 |
ISBN (elektroninen) | 979-8-89176-093-6 |
Tila | Julkaistu - 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | The 18th Conference of the European Chapter of the Association for Computational Linguistics - St. Julians, Malta Kesto: 17 maalisk. 2024 → 22 maalisk. 2024 Konferenssinumero: 18 |
Lisätietoja
Publisher Copyright:© 2024 Association for Computational Linguistics.
Tieteenalat
- 6121 Kielitieteet
- 113 Tietojenkäsittely- ja informaatiotieteet