Morfessor-enriched features and multilingual training for canonical morphological segmentation

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

In our submission to the SIGMORPHON 2022 Shared Task on Morpheme Segmentation, we study whether an unsupervised morphological segmentation method, Morfessor, can help in a supervised setting. Previous research has shown the effectiveness of the approach in semisupervised settings with small amounts of labeled data. The current tasks vary in data size: the amount of word-level annotated training data is much larger, but the amount of sentencelevel annotated training data remains small. Our approach is to pre-segment the input data for a neural sequence-to-sequence model with the unsupervised method. As the unsupervised method can be trained with raw text data, we use Wikipedia to increase the amount of training data. In addition, we train multilingual models for the sentence-level task. The results for the Morfessor-enriched features are mixed, showing benefit for all three sentencelevel tasks but only some of the word-level tasks. The multilingual training yields considerable improvements over the monolingual sentence-level models, but it negates the effect of the enriched features.
Alkuperäiskielienglanti
OtsikkoProceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology
ToimittajatGarrett Nicolai, Eleanor Chodroff
Sivumäärä8
JulkaisupaikkaStroudsburg
KustantajaThe Association for Computational Linguistics
Julkaisupäiväkesäk. 2022
Sivut144-151
ISBN (elektroninen)978-1-955917-82-7
DOI - pysyväislinkit
TilaJulkaistu - kesäk. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaWorkshop on Computational Research in Phonetics, Phonology, and Morphology - Seattle, Yhdysvallat (USA)
Kesto: 14 heinäk. 202214 heinäk. 2022
Konferenssinumero: 19

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä