Multilinear operator-valued Calderon-Zygmund theory

Francesco Di Plinio, Kangwei Li, Henri Martikainen, Emil Vuorinen

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Abstrakti

We develop a general theory of multilinear singular integrals with operator-valued kernels, acting on tuples of UMD Banach spaces. This, in particular, involves investigating multilinear variants of the R-boundedness condition naturally arising in operator-valued theory. We proceed by establishing a suitable representation of multilinear, operator-valued singular integrals in terms of operator-valued dyadic shifts and paraproducts, and studying the boundedness of these model operators via dyadic-probabilistic Banach space-valued analysis. In the bilinear case, we obtain a T(1)-type theorem without any additional assumptions on the Banach spaces other than the necessary UMD. Higher degrees of multilinearity are tackled via a new formulation of the Rademacher maximal function (RMF) condition. In addition to the natural UMD lattice cases, our RMF condition covers suitable tuples of non-commutative L-P spaces. We employ our operator-valued theory to obtain new multilinear, multi-parameter, operator-valued theorems in the natural setting of UMD spaces with property alpha. (C) 2020 Elsevier Inc. All rights reserved.

Alkuperäiskielienglanti
Artikkeli108666
LehtiJournal of Functional Analysis
Vuosikerta279
Numero8
Sivumäärä62
ISSN0022-1236
DOI - pysyväislinkit
TilaJulkaistu - 1 marrask. 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 111 Matematiikka

Siteeraa tätä