Projekteja vuodessa
Abstrakti
We develop a general theory of multilinear singular integrals with operator-valued kernels, acting on tuples of UMD Banach spaces. This, in particular, involves investigating multilinear variants of the R-boundedness condition naturally arising in operator-valued theory. We proceed by establishing a suitable representation of multilinear, operator-valued singular integrals in terms of operator-valued dyadic shifts and paraproducts, and studying the boundedness of these model operators via dyadic-probabilistic Banach space-valued analysis. In the bilinear case, we obtain a T(1)-type theorem without any additional assumptions on the Banach spaces other than the necessary UMD. Higher degrees of multilinearity are tackled via a new formulation of the Rademacher maximal function (RMF) condition. In addition to the natural UMD lattice cases, our RMF condition covers suitable tuples of non-commutative L-P spaces. We employ our operator-valued theory to obtain new multilinear, multi-parameter, operator-valued theorems in the natural setting of UMD spaces with property alpha. (C) 2020 Elsevier Inc. All rights reserved.
Alkuperäiskieli | englanti |
---|---|
Artikkeli | 108666 |
Lehti | Journal of Functional Analysis |
Vuosikerta | 279 |
Numero | 8 |
Sivumäärä | 62 |
ISSN | 0022-1236 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 marrask. 2020 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu |
Tieteenalat
- 111 Matematiikka
Projektit
- 2 Päättynyt
-
Singular integrals and the geometry of measures
Martikainen, H. (Projektinjohtaja) & Oikari, T. (Osallistuja)
Valtion perusrahoitus/hankkeet
01/01/2018 → 31/12/2020
Projekti: Helsingin yliopiston kolmivuotinen tutkimushanke
-
Geometric and dyadic harmonic analysis: general measures and rectifiability
Martikainen, H. (Projektinjohtaja) & Airta, E. (Osallistuja)
01/09/2016 → 31/08/2021
Projekti: Tutkimusprojekti