Multiple Admissibility in Language Learning: Judging Grammaticality using Unlabeled Data

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

We present our work on the problem of detection Multiple Admissibility (MA) in language learning. Multiple Admissibility occurs when more than one grammatical form of a word fits syntactically and semantically in a given context. In second-language education—in particular, in intelligent tutoring systems/computer-aided language learning (ITS/CALL), systems generate exercises automatically. MA implies that multiple alternative answers are possible. We treat the problem as a grammaticality judgement task. We train a neural network with an objective to label sentences as grammatical or ungrammatical, using a "simulated learner corpus": a dataset with correct text and with artificial errors, generated automatically. While MA occurs commonly in many languages, this paper focuses on learning Russian. We present a detailed classification of the types of constructions in Russian, in which MA is possible, and evaluate the model using a test set built from answers provided by users of the Revita language learning system.
Alkuperäiskielienglanti
OtsikkoThe 7th Workshop on Balto-Slavic Natural Language Processing : Proceedings of the Workshop
ToimittajatTomaž Erjavec, Michał Marcińczuk, Preslav Nakov, Jakub Piskorski, Lidia Pivovarova, Jan Šnajder, Josef Steinberger, Roman Yangarber
Sivumäärä11
JulkaisupaikkaStroudsburg
KustantajaThe Association for Computational Linguistics
Julkaisupäiväelokuuta 2019
Sivut12-22
ISBN (elektroninen)978-1-950737-41-3
DOI - pysyväislinkit
TilaJulkaistu - elokuuta 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaWorkshop on
Balto-Slavic Natural Language Processing
- Florence, Italia
Kesto: 2 elokuuta 20192 elokuuta 2019
Konferenssinumero: 7
http://bsnlp.cs.helsinki.fi

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä