Abstrakti
We study a class of optimization problems in the Wasserstein space (the space of probability measures) where the objective function is nonconvex along generalized geodesics. Specifically, the objective exhibits some difference-of-convex structure along these geodesics. The setting also encompasses sampling problems where the logarithm of the target distribution is difference-of-convex. We derive multiple convergence insights for a novel semi Forward-Backward Euler scheme under several nonconvex (and possibly nonsmooth) regimes. Notably, the semi Forward-Backward Euler is just a slight modification of the Forward-Backward Euler whose convergence is -- to our knowledge -- still unknown in our very general non-geodesically-convex setting.
Alkuperäiskieli | englanti |
---|---|
Otsikko | Advances in Neural Information Processing Systems 37 (NeurIPS 2024) |
Kustantaja | Curran Associates Inc. |
Julkaisupäivä | jouluk. 2024 |
Tila | Julkaistu - jouluk. 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | Conference on Neural Information Processing Systems - Vancouver, Kanada Kesto: 9 jouluk. 2024 → 15 jouluk. 2024 Konferenssinumero: 38 |
Julkaisusarja
Nimi | Advances in Neural Information Processing Systems (NeurIPS) |
---|---|
Vuosikerta | 37 |
ISSN (elektroninen) | 1049-5258 |
Tieteenalat
- 113 Tietojenkäsittely- ja informaatiotieteet