North Sámi Dialect Identification with Self-supervised Speech Models

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

The North Sámi (NS) language encapsulates four primary dialectal variants that are related but that also have differences in their phonology, morphology, and vocabulary. The unique geopolitical location of NS speakers means that in many cases they are bilingual in Sámi as well as in the dominant state language: Norwegian, Swedish, or Finnish. This enables us to study the NS variants both with respect to the spoken state language and their acoustic characteristics. In this paper, we investigate an extensive set of acoustic features, including MFCCs and prosodic features, as well as state-of-the-art self-supervised representations, namely, XLS-R, WavLM, and HuBERT, for the automatic detection of the four NS variants. In addition, we examine how the majority state language is reflected in the dialects. Our results show that NS dialects are influenced by the state language and that the four dialects are separable, reaching high classification accuracy, especially with the XLS-R model.
Alkuperäiskielienglanti
OtsikkoProceedings of the 24th INTERSPEECH Conference
Sivumäärä5
JulkaisupaikkaBaixas
KustantajaISCA - International Speech Communication Association
Julkaisupäiväelok. 2023
Sivut5306-5310
DOI - pysyväislinkit
TilaJulkaistu - elok. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaINTERSPEECH - Convention Centre Dublin, Dublin, Irlanti
Kesto: 20 elok. 202324 elok. 2023
Konferenssinumero: 24
https://www.interspeech2023.org/

Julkaisusarja

NimiInterspeech
KustantajaISCA - International Speech Communication Association
ISSN (elektroninen)2958-1796

Tieteenalat

  • 213 Sähkö-, automaatio- ja tietoliikennetekniikka, elektroniikka
  • 113 Tietojenkäsittely- ja informaatiotieteet
  • 6121 Kielitieteet

Siteeraa tätä