Abstrakti
The Bessel-Neumann expansion (of integer order) of a function $g:\mathbb{C} \rightarrow\mathbb{C}$ corresponds to representing $g$ as a linear combination of basis functions $\phi_0,\phi_1,\ldots$, i.e., $g(z)=\sum_{\ell = 0}^\infty w_\ell \phi_\ell(s)$, where $\phi_i(z)=J_i(z)$, $i=0,\ldots$, are the Bessel functions. In this work, we study an expansion for a more general class of basis functions. More precisely, we assume that the basis functions satisfy an infinite dimensional linear ordinary differential equation associated with a Hessenberg matrix, motivated by the fact that these basis functions occur in certain iterative methods. A procedure to compute the basis functions as well as the coefficients is proposed. Theoretical properties of the expansion are studied. We illustrate that non-standard basis functions can give faster convergence than the Bessel functions.
Alkuperäiskieli | englanti |
---|---|
Otsikko | Numerical Mathematics and Advanced Applications ENUMATH 2017 |
Toimittajat | F. Radu, K. Kumar, I. Berre, J. Nordbotten, I. Pop |
Sivumäärä | 10 |
Vuosikerta | 126 |
Kustantaja | Springer, Cham |
Julkaisupäivä | 5 tammik. 2019 |
Sivut | 205-214 |
ISBN (painettu) | 978-3-319-96414-0 |
ISBN (elektroninen) | 978-3-319-96415-7 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 5 tammik. 2019 |
Julkaistu ulkoisesti | Kyllä |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | European Conference on Numerical Mathematics and Advanced Applications ENUMATH 2017 - Voss, Norja Kesto: 25 syysk. 2017 → 29 syysk. 2017 |
Julkaisusarja
Nimi | Lecture Notes in Computational Science and Engineering |
---|---|
Kustantaja | Springer-Verlag |
ISSN (painettu) | 1439-7358 |
Tieteenalat
- 111 Matematiikka