Abstrakti
We prove under V = L that the inclusion modulo the non-stationary ideal is a Sigma(1)(1)-complete quasi-order in the generalized Borel-reducibility hierarchy (kappa > omega). This improvement to known results in L has many new consequences concerning the Sigma(1)(1)-completeness of quasi-orders and equivalence relations such as the embeddability of dense linear orders as well as the equivalence modulo various versions of the non-stationary ideal. This serves as a partial or complete answer to several open problems stated in the literature. Additionally the theorem is applied to prove a dichotomy in L: If the isomorphism of a countable first-order theory (not necessarily complete) is not Delta(1)(1), then it is Sigma(1)(1)-complete.
We also study the case V not equal L and prove Sigma(1)(1)-completeness results for weakly ineffable and weakly compact kappa.
Alkuperäiskieli | englanti |
---|---|
Lehti | Fundamenta Mathematicae |
Vuosikerta | 251 |
Numero | 3 |
Sivut | 245-268 |
Sivumäärä | 24 |
ISSN | 0016-2736 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 13 toukok. 2020 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu |
Tieteenalat
- 111 Matematiikka