On the Negative Perception of Cross-domain Recommendations and Explanations

Denis Kotkov, Alan Medlar, Yang Liu, Dorota Glowacka

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Recommender systems typically operate within a single domain, for example, recommending books based on users' reading habits. If such data is unavailable, it may be possible to make cross-domain recommendations and recommend books based on user preferences from another domain, such as movies. However, despite considerable research on cross-domain recommendations, no studies have investigated their impact on users' behavioural intentions or system perceptions compared to single-domain recommendations. Similarly, while single-domain explanations have been shown to improve users' perceptions of recommendations, there are no comparable studies for the cross-domain case. In this article, we present a between-subject study (N=237) of users' behavioural intentions and perceptions of book recommendations. The study was designed to disentangle the effects of whether recommendations were single- or cross-domain from whether explanations were present or not. Our results show that cross-domain recommendations have lower trust and interest than single-domain recommendations, regardless of their quality. While these negative effects can be ameliorated by cross-domain explanations, they are still perceived as inferior to single-domain recommendations without explanations. Last, we show that explanations decrease interest in the single-domain case, but increase perceived transparency and scrutability in both single- and cross-domain recommendations. Our findings offer valuable insights into the impact of recommendation provenance on user experience and could inform the future development of cross-domain recommender systems.

Alkuperäiskielienglanti
OtsikkoSIGIR 2024 - Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval
Sivumäärä12
KustantajaASSOCIATION FOR COMPUTING MACHINERY, INC
Julkaisupäivä10 heinäk. 2024
Sivut2102-2113
ISBN (elektroninen)979-8-4007-0431-4
DOI - pysyväislinkit
TilaJulkaistu - 10 heinäk. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational ACM SIGIR Conference on Research and Development in Information Retrieval - Washington, Yhdysvallat (USA)
Kesto: 14 heinäk. 202418 heinäk. 2024
Konferenssinumero: 47

Lisätietoja

Publisher Copyright:
© 2024 Owner/Author.

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä