Recent methodological advances in federated learning for healthcare

BloodCounts! consortium, Fan Zhang, Daniel Kreuter, Yichen Chen, Tolou Shadbahr, Carola Bibiane Schönlieb

Tutkimustuotos: ArtikkelijulkaisuKatsausartikkelivertaisarvioitu

Abstrakti

For healthcare datasets, it is often impossible to combine data samples from multiple sites due to ethical, privacy, or logistical concerns. Federated learning allows for the utilization of powerful machine learning algorithms without requiring the pooling of data. Healthcare data have many simultaneous challenges, such as highly siloed data, class imbalance, missing data, distribution shifts, and non-standardized variables, that require new methodologies to address. Federated learning adds significant methodological complexity to conventional centralized machine learning, requiring distributed optimization, communication between nodes, aggregation of models, and redistribution of models. In this systematic review, we consider all papers on Scopus published between January 2015 and February 2023 that describe new federated learning methodologies for addressing challenges with healthcare data. We reviewed 89 papers meeting these criteria. Significant systemic issues were identified throughout the literature, compromising many methodologies reviewed. We give detailed recommendations to help improve methodology development for federated learning in healthcare.

Alkuperäiskielienglanti
Artikkeli101006
LehtiPatterns
Vuosikerta5
Numero6
Sivumäärä16
ISSN2666-3899
DOI - pysyväislinkit
TilaJulkaistu - 14 kesäk. 2024
OKM-julkaisutyyppiA2 Katsausartikkeli tieteellisessä aikakauslehdessä

Lisätietoja

Publisher Copyright:
© 2024 The Authors

Tieteenalat

  • 516 Kasvatustieteet
  • 316 Hoitotiede

Siteeraa tätä