Relationship between carbon stocks and tree species diversity in a humid Guinean savanna landscape in northern Sierra Leone

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Kuvaus

Global sustainable development goals include reducing greenhouse gas emissions from land-use change and maintaining biodiversity. Many studies have examined carbon stocks and tree species diversity, but few have studied the humid Guinean savanna ecosystem. This study focuses on a humid savanna landscape in northern Sierra Leone, aiming to assess carbon stocks and tree species diversity and compare their relationships in different vegetation types. We surveyed 160 sample plots (0.1 ha) in the field for tree species, aboveground carbon (AGC) and soil organic carbon (SOC). In total, 90 tree species were identified in the field. Gmelina arborea, an exotic tree species common in the foothills of the Kuru Hills Forest Reserve, and Combretum glutinosum, Pterocarpus erinaceous and Terminaria glaucescens, which are typical savanna trees, were the most common species. At landscape level, the mean AGC stock was 29.4 Mg C ha(-1) (SD 21.3) and mean topsoil (0-20 cm depth) SOC stock was 42.2 Mg C ha(-1) (SD 20.6). Mean tree species richness and Shannon index per plot were 7 (SD 4) and 1.6 (SD 0.6), respectively. Forests and woodlands had significantly higher mean AGC and tree species richness than bushland, wooded grassland or cropland (p <0.05). In the forest and bushland, a small number of large diameter trees covered a large portion of the total AGC stocks. Furthermore, a moderate linear correlation was observed between AGC and tree species richness (r = 0.475, p <0.001) and AGC and Shannon index (r = 0.375, p <0.05). The correlation between AGC and SOC was weak (r = 0.17, p <0.05). The results emphasise the role of forests and woodlands and large diameter trees in retaining AGC stocks and tree species diversity in the savanna ecosystem.

Alkuperäiskielienglanti
LehtiSouthern Forests
Vuosikerta81
Numero3
Sivumäärä11
ISSN2070-2620
DOI - pysyväislinkit
TilaJulkaistu - 3 huhtikuuta 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 1172 Ympäristötiede

Lainaa tätä

@article{c6ff85f4aa184fcdb704bf1ec3388aaa,
title = "Relationship between carbon stocks and tree species diversity in a humid Guinean savanna landscape in northern Sierra Leone",
abstract = "Global sustainable development goals include reducing greenhouse gas emissions from land-use change and maintaining biodiversity. Many studies have examined carbon stocks and tree species diversity, but few have studied the humid Guinean savanna ecosystem. This study focuses on a humid savanna landscape in northern Sierra Leone, aiming to assess carbon stocks and tree species diversity and compare their relationships in different vegetation types. We surveyed 160 sample plots (0.1 ha) in the field for tree species, aboveground carbon (AGC) and soil organic carbon (SOC). In total, 90 tree species were identified in the field. Gmelina arborea, an exotic tree species common in the foothills of the Kuru Hills Forest Reserve, and Combretum glutinosum, Pterocarpus erinaceous and Terminaria glaucescens, which are typical savanna trees, were the most common species. At landscape level, the mean AGC stock was 29.4 Mg C ha(-1) (SD 21.3) and mean topsoil (0-20 cm depth) SOC stock was 42.2 Mg C ha(-1) (SD 20.6). Mean tree species richness and Shannon index per plot were 7 (SD 4) and 1.6 (SD 0.6), respectively. Forests and woodlands had significantly higher mean AGC and tree species richness than bushland, wooded grassland or cropland (p <0.05). In the forest and bushland, a small number of large diameter trees covered a large portion of the total AGC stocks. Furthermore, a moderate linear correlation was observed between AGC and tree species richness (r = 0.475, p <0.001) and AGC and Shannon index (r = 0.375, p <0.05). The correlation between AGC and SOC was weak (r = 0.17, p <0.05). The results emphasise the role of forests and woodlands and large diameter trees in retaining AGC stocks and tree species diversity in the savanna ecosystem.",
keywords = "ABOVEGROUND BIOMASS, BIODIVERSITY, CLIMATE-CHANGE, COVER, FOREST, MANAGEMENT, MAP, ORGANIC-CARBON, STABILITY, STORAGE, aboveground carbon, soil organic carbon, tree species, 1172 Environmental sciences",
author = "Edward Amara and Janne Heiskanen and Ermias Aynekulu and Pellikka, {Petri Kauko Emil}",
year = "2019",
month = "4",
day = "3",
doi = "10.2989/20702620.2018.1555947",
language = "English",
volume = "81",
journal = "Southern Forests",
issn = "2070-2620",
publisher = "Taylor and Francis Ltd.",
number = "3",

}

Relationship between carbon stocks and tree species diversity in a humid Guinean savanna landscape in northern Sierra Leone. / Amara, Edward; Heiskanen, Janne; Aynekulu, Ermias ; Pellikka, Petri Kauko Emil.

julkaisussa: Southern Forests, Vuosikerta 81, Nro 3, 03.04.2019.

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

TY - JOUR

T1 - Relationship between carbon stocks and tree species diversity in a humid Guinean savanna landscape in northern Sierra Leone

AU - Amara, Edward

AU - Heiskanen, Janne

AU - Aynekulu, Ermias

AU - Pellikka, Petri Kauko Emil

PY - 2019/4/3

Y1 - 2019/4/3

N2 - Global sustainable development goals include reducing greenhouse gas emissions from land-use change and maintaining biodiversity. Many studies have examined carbon stocks and tree species diversity, but few have studied the humid Guinean savanna ecosystem. This study focuses on a humid savanna landscape in northern Sierra Leone, aiming to assess carbon stocks and tree species diversity and compare their relationships in different vegetation types. We surveyed 160 sample plots (0.1 ha) in the field for tree species, aboveground carbon (AGC) and soil organic carbon (SOC). In total, 90 tree species were identified in the field. Gmelina arborea, an exotic tree species common in the foothills of the Kuru Hills Forest Reserve, and Combretum glutinosum, Pterocarpus erinaceous and Terminaria glaucescens, which are typical savanna trees, were the most common species. At landscape level, the mean AGC stock was 29.4 Mg C ha(-1) (SD 21.3) and mean topsoil (0-20 cm depth) SOC stock was 42.2 Mg C ha(-1) (SD 20.6). Mean tree species richness and Shannon index per plot were 7 (SD 4) and 1.6 (SD 0.6), respectively. Forests and woodlands had significantly higher mean AGC and tree species richness than bushland, wooded grassland or cropland (p <0.05). In the forest and bushland, a small number of large diameter trees covered a large portion of the total AGC stocks. Furthermore, a moderate linear correlation was observed between AGC and tree species richness (r = 0.475, p <0.001) and AGC and Shannon index (r = 0.375, p <0.05). The correlation between AGC and SOC was weak (r = 0.17, p <0.05). The results emphasise the role of forests and woodlands and large diameter trees in retaining AGC stocks and tree species diversity in the savanna ecosystem.

AB - Global sustainable development goals include reducing greenhouse gas emissions from land-use change and maintaining biodiversity. Many studies have examined carbon stocks and tree species diversity, but few have studied the humid Guinean savanna ecosystem. This study focuses on a humid savanna landscape in northern Sierra Leone, aiming to assess carbon stocks and tree species diversity and compare their relationships in different vegetation types. We surveyed 160 sample plots (0.1 ha) in the field for tree species, aboveground carbon (AGC) and soil organic carbon (SOC). In total, 90 tree species were identified in the field. Gmelina arborea, an exotic tree species common in the foothills of the Kuru Hills Forest Reserve, and Combretum glutinosum, Pterocarpus erinaceous and Terminaria glaucescens, which are typical savanna trees, were the most common species. At landscape level, the mean AGC stock was 29.4 Mg C ha(-1) (SD 21.3) and mean topsoil (0-20 cm depth) SOC stock was 42.2 Mg C ha(-1) (SD 20.6). Mean tree species richness and Shannon index per plot were 7 (SD 4) and 1.6 (SD 0.6), respectively. Forests and woodlands had significantly higher mean AGC and tree species richness than bushland, wooded grassland or cropland (p <0.05). In the forest and bushland, a small number of large diameter trees covered a large portion of the total AGC stocks. Furthermore, a moderate linear correlation was observed between AGC and tree species richness (r = 0.475, p <0.001) and AGC and Shannon index (r = 0.375, p <0.05). The correlation between AGC and SOC was weak (r = 0.17, p <0.05). The results emphasise the role of forests and woodlands and large diameter trees in retaining AGC stocks and tree species diversity in the savanna ecosystem.

KW - ABOVEGROUND BIOMASS

KW - BIODIVERSITY

KW - CLIMATE-CHANGE

KW - COVER

KW - FOREST

KW - MANAGEMENT

KW - MAP

KW - ORGANIC-CARBON

KW - STABILITY

KW - STORAGE

KW - aboveground carbon

KW - soil organic carbon

KW - tree species

KW - 1172 Environmental sciences

U2 - 10.2989/20702620.2018.1555947

DO - 10.2989/20702620.2018.1555947

M3 - Article

VL - 81

JO - Southern Forests

JF - Southern Forests

SN - 2070-2620

IS - 3

ER -