Resident-invader dynamics of similar strategies in fluctuating environments

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Abstrakti

We study resident-invader dynamics in fluctuating environments when the invader and the resident have close but distinct strategies. First we focus on a class of continuous-time models of unstructured populations of multi-dimensional strategies, which incorporates environmental feedback and environmental stochasticity. Then we generalize our results to a class of structured population models. We classify the generic population dynamical outcomes of an invasion event when the resident population in a given environment is non-growing on the long-run and stochastically persistent. Our approach is based on the series expansion of a model with respect to the small strategy difference, and on the analysis of a stochastic fast-slow system induced by time-scale separation. Theoretical and numerical analyses show that the total size of the resident and invader population varies stochastically and dramatically in time, while the relative size of the invader population changes slowly and asymptotically in time. Thereby the classification is based on the asymptotic behavior of the relative population size, and which is shown to be fully determined by invasion criteria (i.e., without having to study the full generic dynamical system). Our results extend and generalize previous results for a stable resident equilibrium (particularly, Geritz in J Math Biol 50(1):67-82, 2005; Dercole and Geritz in J Theor Biol 394:231-254, 2016) to non-equilibrium resident population dynamics as well as resident dynamics with stochastic (or deterministic) drivers.

Alkuperäiskielienglanti
LehtiJournal of mathematical biology
Vuosikerta81
Sivut907–959
Sivumäärä53
ISSN0303-6812
DOI - pysyväislinkit
TilaJulkaistu - 7 syyskuuta 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 1181 Ekologia, evoluutiobiologia
  • 111 Matematiikka

Siteeraa tätä