Retrieving atmospheric environmental parameters such as atmospheric horizontal visibility and mass concentration of aerosol particles with a diameter of 2.5 or 10 μm or less (PM 2.5 , PM 10 , respectively) from digital images provides new tools for horizontal environmental monitoring. In this study, we propose a new end-to-end convolutional neural network (CNN) for the retrieval of multiple atmospheric environmental parameters (RMEPs) from images. In contrast to other retrieval models, RMEP can retrieve a suite of atmospheric environmental parameters including atmospheric horizontal visibility, relative humidity (RH), ambient temperature, PM 2.5 , and PM 10 simultaneously from a single image. Experimental results demonstrate that: 1) it is possible to simultaneously retrieve multiple atmospheric environmental parameters; 2) spatial and spectral resolutions of images are not the key factors for the retrieval on the horizontal scale; and 3) RMEP achieves the best overall retrieval performance compared with several classic CNNs such as AlexNet, ResNet-50, and DenseNet-121, and the results are based on experiments on images extracted from webcams located in different continents (test R2 values are 0.63, 0.72, and 0.82 for atmospheric horizontal visibility, RH, and ambient temperature, respectively). Experimental results show the potential of utilizing webcams to help monitor the environment. Code and more results are available at https://github.com/cvvsu/RMEP .
LehtiIEEE Geoscience and Remote Sensing Letters
DOI - pysyväislinkit
TilaJulkaistu - 4 helmik. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu


  • 1171 Geotieteet
  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä