ScType enables fast and accurate cell type identification from spatial transcriptomics data

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Abstrakti

The limited resolution of spatial transcriptomics (ST) assays in the past has led to the development of cell type annotation methods that separate the convolved signal based on available external atlas data. In light of the rapidly increasing resolution of the ST assay technologies, we made available and investigated the performance of a deconvolution-free marker-based cell annotation method called scType. In contrast to existing methods, the spatial application of scType does not require computationally strenuous deconvolution, nor large single-cell reference atlases. We show that scType enables ultra-fast and accurate identification of abundant cell types from ST data, especially when a large enough panel of genes is detected. Examples of such assays are Visium and Slide-seq, which currently offer the best trade-off between high resolution and number of genes detected by the assay for cell type annotation.

Alkuperäiskielienglanti
Artikkelibtae426
LehtiBioinformatics
Vuosikerta40
Numero7
Sivumäärä4
ISSN1367-4803
DOI - pysyväislinkit
TilaJulkaistu - 10 heinäk. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Lisätietoja

Publisher Copyright:
© 2024 The Author(s).

Tieteenalat

  • 1182 Biokemia, solu- ja molekyylibiologia

Siteeraa tätä