Stranger than Paradigms: Word Embedding Benchmarks Don't Align With Morphology

Timothee Mickus, Maria Copot

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Abstrakti

Word embeddings have proven a boon in NLP in general, and computational approaches to morphology in particular. However, methods to assess the quality of a word embedding model only tangentially target morphological knowledge, which may lead to suboptimal model selection and biased conclusions in research that employs word embeddings to investigate morphology. In this paper, we empirically test this hypothesis by exhaustively evaluating 1,200 French models with varying hyperparameters on 14 different tasks. Models that perform well on morphology tasks tend to differ from those which succeed on more traditional benchmarks. An especially critical hyperparameter appears to be the negative sampling distribution smoothing exponent: Our study suggest that the common practice of setting it to 0.75 is not appropriate: its optimal value depends on the type of linguistic knowledge being tested.
Alkuperäiskielienglanti
LehtiProceedings of the Society for Computation in Linguistics
Vuosikerta7
Sivut173–189
Sivumäärä17
ISSN2834-1007
DOI - pysyväislinkit
TilaJulkaistu - 1 kesäk. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 6121 Kielitieteet
  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä