Superfluid Helium in Three-Dimensional Counterflow Differs Strongly from Classical Flows: Anisotropy on Small Scales

L. Biferale, D. Khomenko, V. L'vov, A. Pomyalov, G. Sahoo

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Kuvaus

Three-dimensional anisotropic turbulence in classical fluids tends towards isotropy and homogeneity with decreasing scales, allowing-eventually-the abstract model of homogeneous and isotropic turbulence to be relevant. We show here that the opposite is true for superfluid He-4 turbulence in three-dimensional counterflow channel geometry. This flow becomes less isotropic upon decreasing scales, becoming eventually quasi-two-dimensional. The physical reason for this unusual phenomenon is elucidated and supported by theory and simulations.

Alkuperäiskielienglanti
Artikkeli144501
LehtiPhysical Review Letters
Vuosikerta122
Numero14
Sivumäärä6
ISSN0031-9007
DOI - pysyväislinkit
TilaJulkaistu - 8 huhtikuuta 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 111 Matematiikka

Lainaa tätä

Biferale, L. ; Khomenko, D. ; L'vov, V. ; Pomyalov, A. ; Sahoo, G. / Superfluid Helium in Three-Dimensional Counterflow Differs Strongly from Classical Flows : Anisotropy on Small Scales. Julkaisussa: Physical Review Letters. 2019 ; Vuosikerta 122, Nro 14.
@article{bc30f526b2dc4a93bb1b5138d0392683,
title = "Superfluid Helium in Three-Dimensional Counterflow Differs Strongly from Classical Flows: Anisotropy on Small Scales",
abstract = "Three-dimensional anisotropic turbulence in classical fluids tends towards isotropy and homogeneity with decreasing scales, allowing-eventually-the abstract model of homogeneous and isotropic turbulence to be relevant. We show here that the opposite is true for superfluid He-4 turbulence in three-dimensional counterflow channel geometry. This flow becomes less isotropic upon decreasing scales, becoming eventually quasi-two-dimensional. The physical reason for this unusual phenomenon is elucidated and supported by theory and simulations.",
keywords = "111 Mathematics, LIQUID-HELIUM, 2ND SOUND, TURBULENCE, SPECTRA",
author = "L. Biferale and D. Khomenko and V. L'vov and A. Pomyalov and G. Sahoo",
year = "2019",
month = "4",
day = "8",
doi = "10.1103/PhysRevLett.122.144501",
language = "English",
volume = "122",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "14",

}

Superfluid Helium in Three-Dimensional Counterflow Differs Strongly from Classical Flows : Anisotropy on Small Scales. / Biferale, L.; Khomenko, D.; L'vov, V.; Pomyalov, A.; Sahoo, G.

julkaisussa: Physical Review Letters, Vuosikerta 122, Nro 14, 144501, 08.04.2019.

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

TY - JOUR

T1 - Superfluid Helium in Three-Dimensional Counterflow Differs Strongly from Classical Flows

T2 - Anisotropy on Small Scales

AU - Biferale, L.

AU - Khomenko, D.

AU - L'vov, V.

AU - Pomyalov, A.

AU - Sahoo, G.

PY - 2019/4/8

Y1 - 2019/4/8

N2 - Three-dimensional anisotropic turbulence in classical fluids tends towards isotropy and homogeneity with decreasing scales, allowing-eventually-the abstract model of homogeneous and isotropic turbulence to be relevant. We show here that the opposite is true for superfluid He-4 turbulence in three-dimensional counterflow channel geometry. This flow becomes less isotropic upon decreasing scales, becoming eventually quasi-two-dimensional. The physical reason for this unusual phenomenon is elucidated and supported by theory and simulations.

AB - Three-dimensional anisotropic turbulence in classical fluids tends towards isotropy and homogeneity with decreasing scales, allowing-eventually-the abstract model of homogeneous and isotropic turbulence to be relevant. We show here that the opposite is true for superfluid He-4 turbulence in three-dimensional counterflow channel geometry. This flow becomes less isotropic upon decreasing scales, becoming eventually quasi-two-dimensional. The physical reason for this unusual phenomenon is elucidated and supported by theory and simulations.

KW - 111 Mathematics

KW - LIQUID-HELIUM

KW - 2ND SOUND

KW - TURBULENCE

KW - SPECTRA

U2 - 10.1103/PhysRevLett.122.144501

DO - 10.1103/PhysRevLett.122.144501

M3 - Article

VL - 122

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 14

M1 - 144501

ER -