Supporting Quality of Learning in University Mathematics: a Comparison of Two Instructional Designs

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Kuvaus

Prior research acknowledges the need to further develop undergraduate mathematics instruction. The aim of this study is to investigate the relationship between instructional design and quality of learning. This quantitative study approaches the learning environment by comparing students’ approaches to learning, self-efficacy, and experiences of the teaching-learning environment in two undergraduate mathematics courses using different pedagogical approaches. The first course functioned within a traditional lecture-based framework with the inclusion of student-centred elements, and the second course was implemented with Extreme Apprenticeship, a novel student-centred teaching method. The analysis is based on the same cohort of students in these two contexts (N = 91). Students were clustered based on their deep and surface approaches to learning and three clusters were identified: students applying a deep approach, students applying a surface approach, and students applying a context-sensitive surface approach. The results show that the more student-centred course design succeeded in supporting more favourable approaches to learning, higher self-efficacy levels, and more positive experiences of the teaching-learning environment. In addition, all three clusters benefited from the more student-centred course design, with students applying a context-sensitive surface approach benefiting the most. Overall, the results suggest that it is possible to promote the quality of university mathematics learning with instructional designs that, besides content, take a holistic approach to the learning environment.
Alkuperäiskielienglanti
LehtiInternational Journal of Research in Undergraduate Mathematics Education
Vuosikerta5
Numero1
Sivut75-96
Sivumäärä22
ISSN2198-9745
DOI - pysyväislinkit
TilaJulkaistu - huhtikuuta 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 516 Kasvatustieteet

Lainaa tätä

@article{118744c92f504db783f9e27c21892f1b,
title = "Supporting Quality of Learning in University Mathematics: a Comparison of Two Instructional Designs",
abstract = "Prior research acknowledges the need to further develop undergraduate mathematics instruction. The aim of this study is to investigate the relationship between instructional design and quality of learning. This quantitative study approaches the learning environment by comparing students’ approaches to learning, self-efficacy, and experiences of the teaching-learning environment in two undergraduate mathematics courses using different pedagogical approaches. The first course functioned within a traditional lecture-based framework with the inclusion of student-centred elements, and the second course was implemented with Extreme Apprenticeship, a novel student-centred teaching method. The analysis is based on the same cohort of students in these two contexts (N = 91). Students were clustered based on their deep and surface approaches to learning and three clusters were identified: students applying a deep approach, students applying a surface approach, and students applying a context-sensitive surface approach. The results show that the more student-centred course design succeeded in supporting more favourable approaches to learning, higher self-efficacy levels, and more positive experiences of the teaching-learning environment. In addition, all three clusters benefited from the more student-centred course design, with students applying a context-sensitive surface approach benefiting the most. Overall, the results suggest that it is possible to promote the quality of university mathematics learning with instructional designs that, besides content, take a holistic approach to the learning environment.",
keywords = "516 Educational sciences",
author = "Juulia Lahdenper{\"a} and Liisa Postareff and Johanna R{\"a}m{\"o}",
year = "2019",
month = "4",
doi = "10.1007/s40753-018-0080-y",
language = "English",
volume = "5",
pages = "75--96",
journal = "International Journal of Research in Undergraduate Mathematics Education",
issn = "2198-9745",
publisher = "Springer",
number = "1",

}

Supporting Quality of Learning in University Mathematics : a Comparison of Two Instructional Designs. / Lahdenperä, Juulia; Postareff, Liisa; Rämö, Johanna.

julkaisussa: International Journal of Research in Undergraduate Mathematics Education, Vuosikerta 5, Nro 1, 04.2019, s. 75-96.

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

TY - JOUR

T1 - Supporting Quality of Learning in University Mathematics

T2 - a Comparison of Two Instructional Designs

AU - Lahdenperä, Juulia

AU - Postareff, Liisa

AU - Rämö, Johanna

PY - 2019/4

Y1 - 2019/4

N2 - Prior research acknowledges the need to further develop undergraduate mathematics instruction. The aim of this study is to investigate the relationship between instructional design and quality of learning. This quantitative study approaches the learning environment by comparing students’ approaches to learning, self-efficacy, and experiences of the teaching-learning environment in two undergraduate mathematics courses using different pedagogical approaches. The first course functioned within a traditional lecture-based framework with the inclusion of student-centred elements, and the second course was implemented with Extreme Apprenticeship, a novel student-centred teaching method. The analysis is based on the same cohort of students in these two contexts (N = 91). Students were clustered based on their deep and surface approaches to learning and three clusters were identified: students applying a deep approach, students applying a surface approach, and students applying a context-sensitive surface approach. The results show that the more student-centred course design succeeded in supporting more favourable approaches to learning, higher self-efficacy levels, and more positive experiences of the teaching-learning environment. In addition, all three clusters benefited from the more student-centred course design, with students applying a context-sensitive surface approach benefiting the most. Overall, the results suggest that it is possible to promote the quality of university mathematics learning with instructional designs that, besides content, take a holistic approach to the learning environment.

AB - Prior research acknowledges the need to further develop undergraduate mathematics instruction. The aim of this study is to investigate the relationship between instructional design and quality of learning. This quantitative study approaches the learning environment by comparing students’ approaches to learning, self-efficacy, and experiences of the teaching-learning environment in two undergraduate mathematics courses using different pedagogical approaches. The first course functioned within a traditional lecture-based framework with the inclusion of student-centred elements, and the second course was implemented with Extreme Apprenticeship, a novel student-centred teaching method. The analysis is based on the same cohort of students in these two contexts (N = 91). Students were clustered based on their deep and surface approaches to learning and three clusters were identified: students applying a deep approach, students applying a surface approach, and students applying a context-sensitive surface approach. The results show that the more student-centred course design succeeded in supporting more favourable approaches to learning, higher self-efficacy levels, and more positive experiences of the teaching-learning environment. In addition, all three clusters benefited from the more student-centred course design, with students applying a context-sensitive surface approach benefiting the most. Overall, the results suggest that it is possible to promote the quality of university mathematics learning with instructional designs that, besides content, take a holistic approach to the learning environment.

KW - 516 Educational sciences

U2 - 10.1007/s40753-018-0080-y

DO - 10.1007/s40753-018-0080-y

M3 - Article

VL - 5

SP - 75

EP - 96

JO - International Journal of Research in Undergraduate Mathematics Education

JF - International Journal of Research in Undergraduate Mathematics Education

SN - 2198-9745

IS - 1

ER -