Testing the Generalization Power of Neural Network Models Across NLI Benchmarks

Aarne Johannes Talman, Stergios Chatzikyriakidis

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Neural network models have been very successful in natural language inference, with the best models reaching 90% accuracy in some benchmarks. However, the success of these models turns out to be largely benchmark specific. We show that models trained on a natural language inference dataset drawn from one benchmark fail to perform well in others, even if the notion of inference assumed in these benchmarks is the same or similar. We train six high performing neural network models on different datasets and show that each one of these has problems of generalizing when we replace the original test set with a test set taken from another corpus designed for the same task. In light of these results, we argue that most of the current neural network models are not able to generalize well in the task of natural language inference. We find that using large pre-trained language models helps with transfer learning when the datasets are similar enough. Our results also highlight that the current NLI datasets do not cover the different nuances of inference extensively enough.
Alkuperäiskielienglanti
OtsikkoThe Workshop BlackboxNLP on Analyzing and Interpreting Neural Networks for NLP at ACL 2019 : Proceedings of the Second Workshop
ToimittajatTal Linzen, Grzegorz Chrupała, Yonatan Belinkov, Dieuwke Hupkes
Sivumäärä10
JulkaisupaikkaStroudsburg
KustantajaThe Association for Computational Linguistics
Julkaisupäivä1 elok. 2019
Sivut85-94
ISBN (elektroninen)978-1-950737-30-7
TilaJulkaistu - 1 elok. 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
Tapahtuma2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP - Florence, Italia
Kesto: 1 elok. 20191 elok. 2019
Konferenssinumero: 2

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet
  • 6121 Kielitieteet

Siteeraa tätä