The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Kuvaus

The intestinal microbiota, composed of pro- and anti-inflammatory microbes, has an essential role in maintaining gut homeostasis and functionality. An overly hygienic lifestyle, consumption of processed and fiber-poor foods, or antibiotics are major factors modulating the microbiota and possibly leading to longstanding dysbiosis. Dysbiotic microbiota is characterized to have altered composition, reduced diversity and stability, as well as increased levels of lipopolysaccharide-containing, proinflammatory bacteria. Specific commensal species as novel probiotics, so-called next-generation probiotics, could restore the intestinal health by means of attenuating inflammation and strengthening the epithelial barrier. In this review we summarize the latest findings considering the beneficial effects of the promising commensals across all major intestinal phyla. These include the already well-known bifidobacteria, which use extracellular structures or secreted substances to promote intestinal health. Faecalibacterium prausnitzii, Roseburia intestinalis, and Eubacterium hallii metabolize dietary fibers as major short-chain fatty acid producers providing energy sources for enterocytes and achieving anti-inflammatory effects in the gut. Akkermansia muciniphila exerts beneficial action in metabolic diseases and fortifies the barrier function. The health-promoting effects of Bacteroides species are relatively recently discovered with the findings of excreted immunomodulatory molecules. These promising, unconventional probiotics could be a part of biotherapeutic strategies in the future.
Alkuperäiskielienglanti
Artikkeli988
LehtiNutrients
Vuosikerta10
Numero8
Sivumäärä23
ISSN2072-6643
DOI - pysyväislinkit
TilaJulkaistu - 29 heinäkuuta 2018
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 3111 Biolääketieteet
  • 3141 Terveystiede

Lainaa tätä

@article{4579ed6918e44ce08768e8d16f63687c,
title = "The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation",
abstract = "The intestinal microbiota, composed of pro- and anti-inflammatory microbes, has an essential role in maintaining gut homeostasis and functionality. An overly hygienic lifestyle, consumption of processed and fiber-poor foods, or antibiotics are major factors modulating the microbiota and possibly leading to longstanding dysbiosis. Dysbiotic microbiota is characterized to have altered composition, reduced diversity and stability, as well as increased levels of lipopolysaccharide-containing, proinflammatory bacteria. Specific commensal species as novel probiotics, so-called next-generation probiotics, could restore the intestinal health by means of attenuating inflammation and strengthening the epithelial barrier. In this review we summarize the latest findings considering the beneficial effects of the promising commensals across all major intestinal phyla. These include the already well-known bifidobacteria, which use extracellular structures or secreted substances to promote intestinal health. Faecalibacterium prausnitzii, Roseburia intestinalis, and Eubacterium hallii metabolize dietary fibers as major short-chain fatty acid producers providing energy sources for enterocytes and achieving anti-inflammatory effects in the gut. Akkermansia muciniphila exerts beneficial action in metabolic diseases and fortifies the barrier function. The health-promoting effects of Bacteroides species are relatively recently discovered with the findings of excreted immunomodulatory molecules. These promising, unconventional probiotics could be a part of biotherapeutic strategies in the future.",
keywords = "3111 Biomedicine, 3141 Health care science",
author = "Kaisa Hiippala and Hanne Jouhten and Aki Ronkainen and Anna Hartikainen and Veera Kainulainen and Jonna Jalanka and Reetta Satokari",
year = "2018",
month = "7",
day = "29",
doi = "10.3390/nu10080988",
language = "English",
volume = "10",
journal = "Nutrients",
issn = "2072-6643",
publisher = "MDPI",
number = "8",

}

TY - JOUR

T1 - The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation

AU - Hiippala, Kaisa

AU - Jouhten, Hanne

AU - Ronkainen, Aki

AU - Hartikainen, Anna

AU - Kainulainen, Veera

AU - Jalanka, Jonna

AU - Satokari, Reetta

PY - 2018/7/29

Y1 - 2018/7/29

N2 - The intestinal microbiota, composed of pro- and anti-inflammatory microbes, has an essential role in maintaining gut homeostasis and functionality. An overly hygienic lifestyle, consumption of processed and fiber-poor foods, or antibiotics are major factors modulating the microbiota and possibly leading to longstanding dysbiosis. Dysbiotic microbiota is characterized to have altered composition, reduced diversity and stability, as well as increased levels of lipopolysaccharide-containing, proinflammatory bacteria. Specific commensal species as novel probiotics, so-called next-generation probiotics, could restore the intestinal health by means of attenuating inflammation and strengthening the epithelial barrier. In this review we summarize the latest findings considering the beneficial effects of the promising commensals across all major intestinal phyla. These include the already well-known bifidobacteria, which use extracellular structures or secreted substances to promote intestinal health. Faecalibacterium prausnitzii, Roseburia intestinalis, and Eubacterium hallii metabolize dietary fibers as major short-chain fatty acid producers providing energy sources for enterocytes and achieving anti-inflammatory effects in the gut. Akkermansia muciniphila exerts beneficial action in metabolic diseases and fortifies the barrier function. The health-promoting effects of Bacteroides species are relatively recently discovered with the findings of excreted immunomodulatory molecules. These promising, unconventional probiotics could be a part of biotherapeutic strategies in the future.

AB - The intestinal microbiota, composed of pro- and anti-inflammatory microbes, has an essential role in maintaining gut homeostasis and functionality. An overly hygienic lifestyle, consumption of processed and fiber-poor foods, or antibiotics are major factors modulating the microbiota and possibly leading to longstanding dysbiosis. Dysbiotic microbiota is characterized to have altered composition, reduced diversity and stability, as well as increased levels of lipopolysaccharide-containing, proinflammatory bacteria. Specific commensal species as novel probiotics, so-called next-generation probiotics, could restore the intestinal health by means of attenuating inflammation and strengthening the epithelial barrier. In this review we summarize the latest findings considering the beneficial effects of the promising commensals across all major intestinal phyla. These include the already well-known bifidobacteria, which use extracellular structures or secreted substances to promote intestinal health. Faecalibacterium prausnitzii, Roseburia intestinalis, and Eubacterium hallii metabolize dietary fibers as major short-chain fatty acid producers providing energy sources for enterocytes and achieving anti-inflammatory effects in the gut. Akkermansia muciniphila exerts beneficial action in metabolic diseases and fortifies the barrier function. The health-promoting effects of Bacteroides species are relatively recently discovered with the findings of excreted immunomodulatory molecules. These promising, unconventional probiotics could be a part of biotherapeutic strategies in the future.

KW - 3111 Biomedicine

KW - 3141 Health care science

U2 - 10.3390/nu10080988

DO - 10.3390/nu10080988

M3 - Article

VL - 10

JO - Nutrients

JF - Nutrients

SN - 2072-6643

IS - 8

M1 - 988

ER -