Tracking the Traces of Passivization and Negation in Contextualized Representations

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Contextualized word representations encode rich information about syntax and semantics, alongside specificities of each context of use. While contextual variation does not always reflect actual meaning shifts, it can still reduce the similarity of embeddings for word instances having the same meaning. We explore the imprint of two specific linguistic alternations, namely passivization and negation, on the representations generated by neural models trained with two different objectives: masked language modeling and translation. Our exploration methodology is inspired by an approach previously proposed for removing societal biases from word vectors. We show that passivization and negation leave their traces on the representations, and that neutralizing this information leads to more similar embeddings for words that should preserve their meaning in the transformation. We also find clear differences in how the respective features generalize across datasets.
Alkuperäiskielienglanti
OtsikkoProceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
ToimittajatAfra Alishahi, Yonatan Belinkov, Grzegorz Chrupała, Dieuwke Hupkes, Yuval Pinter, Hassan Sajjad
Sivumäärä13
JulkaisupaikkaStroudsburg
KustantajaThe Association for Computational Linguistics
Julkaisupäivä20 marrask. 2020
Sivut136-148
ISBN (elektroninen)978-1-952148-86-6
DOI - pysyväislinkit
TilaJulkaistu - 20 marrask. 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaBlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP - Online event
Kesto: 20 marrask. 202020 marrask. 2020
Konferenssinumero: 3

Tieteenalat

  • 6121 Kielitieteet
  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä