Understanding cellular growth strategies via optimal control

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu


Evolutionary prediction and control are increasingly interesting research topics that are expanding to new areas of application. Unravelling and anticipating successful adaptations to different selection pressures becomes crucial when steering rapidly evolving cancer or microbial populations towards a chosen target. Here we introduce and apply a rich theoretical framework of optimal control to understand adaptive use of traits, which in turn allows eco-evolutionarily informed population control. Using adaptive metabolism and microbial experimental evolution as a case study, we show how demographic stochasticity alone can lead to lag time evolution, which appears as an emergent property in our model. We further show that the cycle length used in serial transfer experiments has practical importance as it may cause unintentional selection for specific growth strategies and lag times. Finally, we show how frequency-dependent selection can be incorporated to the state-dependent optimal control framework allowing the modelling of complex eco-evolutionary dynamics. Our study demonstrates the utility of optimal control theory in elucidating organismal adaptations and the intrinsic decision making of cellular communities with high adaptive potential.
LehtiJournal of the Royal Society Interface
DOI - pysyväislinkit
TilaJulkaistu - 4 tammik. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu


  • 1182 Biokemia, solu- ja molekyylibiologia

Siteeraa tätä