Abstrakti

Drug-target interactions (DTIs) are critical for drug repurposing and elucidation of drug mechanisms, and are manually curated by large databases, such as ChEMBL, BindingDB, DrugBank and DrugTargetCommons. However, the number of curated articles likely constitutes only a fraction of all the articles that contain experimentally determined DTIs. Finding such articles and extracting the experimental information is a challenging task, and there is a pressing need for systematic approaches to assist the curation of DTIs. To this end, we applied Bidirectional Encoder Representations from Transformers (BERT) to identify such articles. Because DTI data intimately depends on the type of assays used to generate it, we also aimed to incorporate functions to predict the assay format.
Alkuperäiskielienglanti
Artikkeli245
LehtiBMC Bioinformatics
Vuosikerta23
Numero1
Sivumäärä13
ISSN1471-2105
DOI - pysyväislinkit
TilaJulkaistu - 21 kesäk. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 3111 Biolääketieteet

Siteeraa tätä