The present paper contributes a research vision for virtual sensing that combines Artificial Intelligence (AI) and Internet of Things (IoT) to increase the coverage of air quality information. Virtual sensors take advantage of correlations between different pollutants to estimate the concentrations of pollutants for which no affordable sensors are available. We cover key requirements and challenges, reflecting on current state-of-the-art and identifying key research challenges. We also demonstrate the potential and feasibility of virtual sensing through experiments conducted with data from Helsinki, Finland, which show how standard PM2.5 and temperature measurements can be used to provide reliable estimates of CO2 and black carbon concentrations. We also discuss potential applications that can benefit from the implementation of virtual air pollution sensors and establish a research roadmap for the path forward.
LehtiIEEE Internet of Things Magazine
TilaHyväksytty/In press - 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Siteeraa tätä