What We Evaluate When We Evaluate Recommender Systems: Understanding Recommender Systems' Performance using Item Response Theory

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Current practices in offline evaluation use rank-based metrics to measure the quality of top-n recommendation lists. This approach has practical benefits as it centres assessment on the output of the recommender system and, therefore, measures performance from the perspective of end-users. However, this methodology neglects how recommender systems more broadly model user preferences, which is not captured by only considering the top-n recommendations. In this article, we use item response theory (IRT), a family of latent variable models used in psychometric assessment, to gain a comprehensive understanding of offline evaluation. We use IRT to jointly estimate the latent abilities of 51 recommendation algorithms and the characteristics of 3 commonly used benchmark data sets. For all data sets, the latent abilities estimated by IRT suggest that higher scores from traditional rank-based metrics do not reflect improvements in modeling user preferences. Furthermore, we show that the top-n recommendations with the most discriminatory power are biased towards lower difficulty items, leaving much room for improvement. Lastly, we highlight the role of popularity in evaluation by investigating how user engagement and item popularity influence recommendation difficulty.

Alkuperäiskielienglanti
OtsikkoProceedings of the 17th ACM Conference on Recommender Systems, RecSys 2023
Sivumäärä13
KustantajaASSOCIATION FOR COMPUTING MACHINERY, INC
Julkaisupäivä14 syysk. 2023
Sivut658-670
ISBN (elektroninen)979-8-4007-0241-9
DOI - pysyväislinkit
TilaJulkaistu - 14 syysk. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaACM Conference on Recommender Systems - Singapore, Singapore
Kesto: 18 syysk. 202322 syysk. 2023
Konferenssinumero: 17

Lisätietoja

Publisher Copyright:
© 2023 Owner/Author.

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä