Sammanfattning
Context is an essential capability for robots that are to be as adaptive as possible in challenging environments. Although there are many context modeling efforts, they assume a fixed structure and number of contexts. In this paper, we propose an incremental deep model that extends Restricted Boltzmann Machines. Our model gets one scene at a time, and gradually extends the contextual model when necessary, either by adding a new context or a new context layer to form a hierarchy. We show on a scene classification benchmark that our method converges to a good estimate of the contexts of the scenes, and performs better or onpar on several tasks compared to other incremental models or non-incremental models.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | 2018 IEEE International Conference on Robotics and Automation (ICRA) |
Antal sidor | 6 |
Förlag | IEEE |
Utgivningsdatum | 13 sep. 2018 |
Sidor | 2411-2416 |
ISBN (tryckt) | 978-1-5386-3082-2 |
ISBN (elektroniskt) | 978-1-5386-3081-5 |
DOI | |
Status | Publicerad - 13 sep. 2018 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | IEEE International Conference on Robotics and Automation - Varaktighet: 21 maj 2018 → 25 maj 2018 |
Vetenskapsgrenar
- 113 Data- och informationsvetenskap