A Formal Category Theoretical Framework for Multi-model Data Transformations

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Data integration and migration processes in polystores and multi-model database management systems highly benefit from data and schema transformations. Rigorous modeling of transformations is a complex problem. The data and schema transformation field is scattered with multiple different transformation frameworks, tools, and mappings. These are usually domain-specific and lack solid theoretical foundations. Our first goal is to define category theoretical foundations for relational, graph, and hierarchical data models and instances. Each data instance is represented as a category theoretical mapping called a functor. We formalize data and schema transformations as Kan lifts utilizing the functorial representation for the instances. A Kan lift is a category theoretical construction consisting of two mappings satisfying the certain universal property. In this work, the two mappings correspond to schema transformation and data transformation.
Originalspråkengelska
Titel på värdpublikationHeterogeneous Data Management, Polystores, and Analytics for Healthcare : VLDB Workshops, Poly 2021 and DMAH 2021
RedaktörerEl Kindi Rezig, Vijay Gadepally, Timothy Mattson, Michael Stonebraker, Tim Kraska, Fusheng Wang, Gang Luo, Jun Kong, Alevtina Dubovitskaya
FörlagSpringer, Cham
Utgivningsdatum20 aug. 2021
Sidor14-28
ISBN (tryckt)978-3-030-93662-4
ISBN (elektroniskt)978-3-030-93663-1
DOI
StatusPublicerad - 20 aug. 2021
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangVLDB Workshop on Polystore Systems for Heterogeneous Data in Multiple Databases with Privacy and Security Assurances -
Varaktighet: 20 aug. 202120 aug. 2021

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här