A Novel Method for Evaluation of Morphological Segmentation

Javad Nouri, Roman Yangarber

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Unsupervised learning of morphological segmentation of words in a language, based only on a large corpus of words, is a challenging task. Evaluation of the learned segmentations is a challenge in itself, due to the inherent ambiguity of the segmentation task. There is no way to posit unique “correct” segmentation for a set of data in an objective way. Two models may arrive at different ways of segmenting the data, which may nonetheless both be valid. Several evaluation methods have been proposed to date, but they do not insist on consistency of the evaluated model. We introduce a new evaluation methodology, which enforces correctness of segmentation boundaries while also assuring consistency of segmentation decisions across the corpus.
Originalspråkengelska
Titel på värdpublikationLREC 2016, Tenth International Conference on Language Resources and Evaluation
RedaktörerNicoletta Calzolari , Khalid Choukri, Thierry Declerck, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, Stelios Piperidis
Antal sidor9
UtgivningsortParis
FörlagEuropean Language Resources Association (ELRA)
Utgivningsdatum2016
Sidor3102-3109
ISBN (elektroniskt)978-2-9517408-9-1
StatusPublicerad - 2016
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangInternational Conference on Language Resources and Evaluation - Portorož, Slovenien
Varaktighet: 23 maj 201628 maj 2016
Konferensnummer: 10

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här