Sammanfattning
Unsupervised learning of morphological segmentation of words in a language, based only on a large corpus of words, is a challenging task. Evaluation of the learned segmentations is a challenge in itself, due to the inherent ambiguity of the segmentation task. There is no way to posit unique “correct” segmentation for a set of data in an objective way. Two models may arrive at different ways of segmenting the data, which may nonetheless both be valid. Several evaluation methods have been proposed to date, but they do not insist on consistency of the evaluated model. We introduce a new evaluation methodology, which enforces correctness of segmentation boundaries while also assuring consistency of segmentation decisions across the corpus.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | LREC 2016, Tenth International Conference on Language Resources and Evaluation |
Redaktörer | Nicoletta Calzolari , Khalid Choukri, Thierry Declerck, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, Stelios Piperidis |
Antal sidor | 9 |
Utgivningsort | Paris |
Förlag | European Language Resources Association (ELRA) |
Utgivningsdatum | 2016 |
Sidor | 3102-3109 |
ISBN (elektroniskt) | 978-2-9517408-9-1 |
Status | Publicerad - 2016 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | International Conference on Language Resources and Evaluation - Portorož, Slovenien Varaktighet: 23 maj 2016 → 28 maj 2016 Konferensnummer: 10 |
Vetenskapsgrenar
- 113 Data- och informationsvetenskap
Projekt
-
Revita: Language learning and AI
Yangarber, R., Katinskaia, A., Hou, J., Furlan, G. & Kylliäinen, I. P.
Projekt: Forskningsprojekt
-
LLL: Language Learning Lab
Yangarber, R., Katinskaia, A., Hou, J., Furlan, G. & Kylliäinen, I. P.
Projekt: Forskningsprojekt