A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates

Henriikka Vekuri, Juha-Pekka Tuovinen, Liisa Kulmala, Dario Papale, Pasi Kolari, Mika Aurela, Tuomas Laurila, Jari Liski, Annalea Lohila

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

Climate change mitigation requires, besides reductions in greenhouse gas emissions, actions to increase carbon sinks in terrestrial ecosystems. A key measurement method for quantifying such sinks and calibrating models is the eddy covariance technique, but it requires imputation, or gap-filling, of missing data for determination of annual carbon balances of ecosystems. Previous comparisons of gap-filling methods have concluded that commonly used methods, such as marginal distribution sampling (MDS), do not have a significant impact on the carbon balance estimate. By analyzing an extensive, global data set, we show that MDS causes significant carbon balance errors for northern (latitude > 60(?)) sites. MDS systematically overestimates the carbon dioxide (CO2) emissions of carbon sources and underestimates the CO2 sequestration of carbon sinks. We also reveal reasons for these biases and show how a machine learning method called extreme gradient boosting or a modified implementation of MDS can be used to substantially reduce the northern site bias.
Originalspråkengelska
Artikelnummer1720
TidskriftScientific Reports
Volym13
Nummer1
Antal sidor9
ISSN2045-2322
DOI
StatusPublicerad - 31 jan. 2023
MoE-publikationstypA1 Tidskriftsartikel-refererad

Vetenskapsgrenar

  • 114 Fysik

Citera det här