AaltoNLP at SemEval-2022 Task 11: Ensembling Task-adaptive Pretrained Transformers for Multilingual Complex NER

Aapo Pietiläinen, Shaoxiong Ji

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

This paper presents the system description of team AaltoNLP for SemEval-2022 shared task 11: MultiCoNER. Transformer-based models have produced high scores on standard Named Entity Recognition (NER) tasks. However, accuracy on complex named entities is still low. Complex and ambiguous named entities have been identified as a major error source in NER tasks. The shared task is about multilingual complex named entity recognition. In this paper, we describe an ensemble approach, which increases accuracy across all tested languages. The system ensembles output from multiple same architecture task-adaptive pretrained transformers trained with different random seeds. We notice a large discrepancy between performance on development and test data. Model selection based on limited development data may not yield optimal results on large test data sets.
Originalspråkengelska
Titel på värdpublikationProceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
RedaktörerGuy Emerson, et al.
Antal sidor6
UtgivningsortStroudsburg
FörlagThe Association for Computational Linguistics
Utgivningsdatumjuli 2022
Sidor1477-1482
ISBN (elektroniskt)978-1-955917-80-3
DOI
StatusPublicerad - juli 2022
Externt publiceradJa
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangInternational Workshop on Semantic Evaluation - Seattle, United States, Seattle, Förenta Staterna (USA)
Varaktighet: 14 juli 202215 juli 2022
Konferensnummer: 16
https://semeval.github.io/SemEval2022/

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här