Sammanfattning
Single-document summarization aims to reduce the size of a text document while preserving the most important information. Much work has been done on open-domain summarization. This paper presents an automatic way to mine domain-specific patterns from text documents. With a small amount of effort required for manual selection, these patterns can be used for domain-specific scenario-based document summarization and information extraction. Our evaluation shows that scenario-based document summarization can both filter irrelevant documents and create summaries for relevant documents within the specified domain.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Proceedings of the The Second International Conference on Artificial Intelligence and Pattern Recognition, Shenzhen, China, 2015 |
Redaktörer | Yimin Zhou |
Antal sidor | 10 |
Förlag | The Society of Digital Information and Wireless Communications (SDIWC) |
Utgivningsdatum | 17 apr. 2015 |
ISBN (elektroniskt) | 978-1-941968-09-3 |
Status | Publicerad - 17 apr. 2015 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | International Conference on Artificial Intelligence and Pattern Recognition - ShenZhen, Kina Varaktighet: 16 apr. 2015 → 18 apr. 2015 Konferensnummer: 2 (AIPR2015) |
Bibliografisk information
AIPR 2015.Vetenskapsgrenar
- 113 Data- och informationsvetenskap
Projekt
-
LLL: Language Learning Lab
Yangarber, R. (Projektledare), Katinskaia, A. (Deltagare), Hou, J. (Deltagare), Furlan, G. (Deltagare) & Kylliäinen, I. P. (Deltagare)
Projekt: Forskningsprojekt